MODEL BUILDING AND PRHCTICRL RSPECTS OF NONLINERR 11
PROGRRHHING(U) STANFORD UNIY CA S?STEHS DPTIHIZRTION

GILL ET AL. MAR 85 SOL-85-2 ARO- 215
UNCLASSIFIED N08814 ?5 C-0267 1 /1

"AD-A155 720

g L ol } .- - .
1..-. n—— I’r. aOEOLAN A " P o— i - -
f . [. W AR Y e BT b i o e, k PO AN N . .,

. . . N LA R A A I .h . 3 PSP .\‘- PR VR B R

. A ORI
¥ PO IGNIRIRTIONS S D R N

N L SRR S

l =l

b
2.2
122
1.8

Off B on o = =
e
K EEFEPIIS -

2 =

——
 ——
————
——
—

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

ez

T T T T T T T TR TR X e Dhdcand

RFPRODUCED AY GOVERNMENT £XPENSE /F O oA (G Tk dh=s's/7

Systems
Optimization
Laboratory

AD-A155 720

MODEL BUILDING AND PRACTICAL ASPECTS
OF MOMLINEAR PROCRAMMING'

by
Philip E. Gill, Walter Murray,
Michael A. Saunders and Margaret H. Wright
TECHNICAL REPORT SOL 85-2

March 1985

1 S

OTIC FILE COPY

- _DTIC_

| This do»um::-m Las been cp;ﬁxE)Ved
for public release and sale; its
distribution is unlimited

Department of Operations Research
Stanford University
Stanford, CA 94305

R e

Accession For
NTIS GRA&I
M

DTIC TAB A

SYSTEMS OPTIMIZATION LABORATORY Unannognced M
DEPARTMENT OF OPERATIONS RESEARCH Justifiiention . _ |

STANFORD UNIVERSITY e -
STANFORD, CALIFORNIA 94305 By o]
WDist!‘i".‘-‘Atin:t!

Avoilopadity 3

P I G]

‘Dist (Spreici

MODEL BUILDING AND PRACTICAL ASPECTS
OF NONLINEAR PROGRAMMING'

by
Philip E. Gill, Walter Murray, DT
Michael A. Saunders and Margaret H. Wright
TECHNICAL REPORT SOL 85-2 JUN 25 185

March 1985

Research and reproduction of this report were partially supported by]a
National Science Foundation Grants MCS-7926009 and ECS-8312142; U.S.
Department of Energy Contract DE-AM03-76F00326, PA# DE~AT03-76ER72018;
Office of Naval Research Contract N00014-75-C-0267; and U.S. Army
Research Office Contract DAAG29-84-K-0156.

Any opinions, findings, and conclusions or recommendations expressed in
this publication are those of the author(s) and do NOT necessarily
reflect the views of the above sponsors.

Reproduction in whole or in part is permitted for any purposes of the
United States Government. This document has been approved for public
release and sale; its distribution is unlimited.

TPresented as an invited paper at the NATO Advanced Study Institute on
"Computational Mathematical Programming”, Bad Windsheim, July 23-
August 2, 1984,

-y o
I

.
Wy .
. . .

Ve e,

Practical Aspccts of Nonlinear Prograimning : 1

1. Aspects of modelling that affect optimization

1.1. Introduction. This survey paper has two main purposes: to summarize (briefly) certain
aspects of modeclling that influence the performance of optimization algorithms, and to describe
recent advances in methods for nonlinear programming that influence the solution of practical
problems. Thesc two themes are not unconnected. A well constructed mathematical model
should be such that the bad cffects of ill-conditioning, degeneracy and inconsistent constraints
are minimized. Ironically, the purpose of good software is to deal effectively with preciscly these
problems. Thercfore it is not surprising that much of the insight necessary to construct a well-
posed mathematical model is pertinent to the formulation of robust algorithms.
The principal problem of concern will be the nonlinear programming problem:

NP minimize F(z)
zER"

z
subjectto € < { A,z } < u,
c(z)
where F(z) (the objective function) is a smooth nonlinear function, A, is a constant matrix of
constraints, and ¢(z) is a vector of smooth nonlinear constraint functions. The objective function
F and the constraint functions taken together comprise the problem functions. Unless otherwise
stated, the problem functions will be assumed to be at lcast twice-continuously differentiable,
(Mcthods that require this degree of smoothness will usually work if there are isolated disconti-
nuitics away from the solution). We shall use g{z) to denote the gradient of F(z), and a;(z) the
gradient of ¢;(z). The solution of NP will be denoted by P

We shall begin with a statement of ten “modelling principles” that may help to make the re-
sulting problem NI? more susceptible to existing nonlinear programming software. This is followed
by a review of the practical aspects of quasi-Newton sequential quuudratic programming (SQP)
methods for nonlincar programuning. We conclude by presenting examples of the application of
SQP methods to some illustrative optimization problems.

1.2. Some basic modelling principles. Our observations of practical optimiration problems
have indicated that, even with the best available software, the eflicient optimization of a model
can be eritically dependent. on certain propertios of the formmlation. 1 is often the case that the
formulator of the model must make muncrous decisions that do not affect the accuracy to which
the model reflects the real world, yet ave crucial to whether the model is amenable to solution by
an optimization algorithm.

Our experience with the role of modelling in numerical optimization will be suminarized by
a list of ten “modelling principles”. These principles may scrve as a guide for those who have
little knowledge of the intricacies and potential pitfalls of modern optimization codes. They have
been derived from our own expericnces with real problems.

Of course, the nature of possible models varics .so much that it is impossible to treat all

relevant aspects of modelling. The main thesis of these principles is that developers of modcls

l. -

R
LS
P

P B

y)

R
Py W)

" "‘"x

."

ey
v""zl

(et otk gn e am

2 Practical Aspects of Nonlincar Progranming

should consider in the initial stages the ultimate nced to solve an optimization problem, since it
is unlikcly that optimization software will ever reach the state wherecin a gencral routine can be
used with impunity for all problems.

For additional matcrial on aspects of modelling that influence the performance of optimiza-
tion methods, the reader is referred to Gill, Murray and Wright (1981).

BASIC MODELLING PRINCIPLES

1. Formulate a simple mode! first and add features in conjunction with running the optimiza-
tion. ’

A model to be optimized should be developed by striking a rcasonable balance between the aims of
improved accuracy in the model (which usually implics added complexity in the formulation) and
increased easc of optimization. This might be achicved by invoking an optimization procedure on
successively more complicated versions of the model, in a form of “stepwise” refinement. Thus,
the cifects of cach refinement in the model on the optimization process can be monitored, and
fundamental difficultics can be discovered much more guickly than if no optimization were applied
until the model was cssentially complete. This is especially important when dealing with models
that contain many interconnccted subsystems, each requiring cxtensive calculation.

. Attempt to use smooth problem functions.

Probably the most fundamental property of the problem fuactions with respect to case of opti--

mization is differentiability, which is important because algorithms arc based on using available
information about a function at one point to deduce its behavior at other points. If the problem
functions are twice-continuously diffcrentiable, say, the ability of an algorithm to locate the solu-
tion is greatly enhimced compared to the case when the problem functions are non-differentiable.
Thercfore, most optimization software is designed to solve smooth problems, and there is a great
incentive to formulate differentiable model functions. A uscful feature of methods for smooth
problems is that they tend to give more information concerning the quality of the solution. For
example, some nonlinecar programming methods can be shown to cxhibit a superlincar rate of
convergence in the neighborhood of a local minimum. If a wethod terminates at a point for
which this rate of convergence is exhibited, the user will have some confidence that the final point
is close to a local minimum. (When solving a problem ou a digital computer, we need to define
carcfully what we mcan by a “snooth” problem. In reality, all software minimizes a function
JU(F(z)), which is the Hoating-point representation of F(z). The function fI(F(z)) is piccewise
constant at the round-off level. If we define ¢, to be the absolute precision of F, i.e.,

IF(z) - FI{F())] = cul2),

then algorithms for siooth problems will work whenever changes in the variables produce changes
in F that are much greater than e,. Note that the vast majority of optitnization softwarc assumes

P

+

WYy

R a4

..
.l " ‘l
Sttt el

DPractical Aspects of Nonlinear Programming ' 3

that F is cornputed to full precision; i.e., it is assumed that €, is of the order of ¢,,||F(z)||, where
€a i8 the relative machine precision.)

I, Avoid defining problem functions that are the result of some iterative procedure (such
as the solution of a differential equation or the evaluation of an integral).

Problem functions defined by an iterative procedure are often the source of subtle discontinuitics
that may impede the progress of the optimization. The solution of these subproblems to full
machine precision (even if possible) generally requires considerable computational effort, and thus
tends to be regarded as unwarranted by the modeller, since the integral or differential cquation

(or whatever) is ouly an approximation to some more complicated real-world phenomenon.

The use of an iterative procedure to define a problemn function most often occurs when the
variables of the problem are functions of a continuous parameter (in an optimal control problem,
for example). In many instances, an cffective strategy for this type of problem is to discretize the
problem bofore applying the optimization method. Accurate solutions to the continuous problem
are then found by rcfining the discretization between optimizations. Such a strategy illustrates
again that it is often worthwhile to intcrlcave modelling and optimization, since the creation of

an increasingly accurate discretization is in fact a modclling process.

IV. Think carefully about the nature of the constraints.

It is not always appreciated that substantial improvements in performance and robustness can
result when methods exploit the different propertics of simple bounds, lincar constraints and
nonlincar constraints. Whenever possible, the user should isolate the lincar constraints from the
nonlincar constraints and use software that differentiates between constraint types during the
optimization. Unfortunately, some problem formats guarantee that a lincar constraint will be
treated as a nonlincar constraint. For exanple, in the class of geomcetric progranuning problems
the objective and constraint functions are sums of functions of the form

$i(z) = azy' 23" - 23, (1.1)

where the z; are the variables (constrained to be positive) and the a;; are constants. The
transformation of a lincar constraint into a sum of functions of the form (1.f) unnccessarily
increases the degree of difliculty of the problem.

The transformation of a problem from one form to another was often unavoidable in the
past because less software was available. When algorithms for unconstrained optimization were
more numerous and more effective than for constrained problems, it was common practice for
simple bound consatraints to be treated by a change of variable. Today, however, algorithms for
problems with only simple bounds or lincar constraints are comparable in cfficiency to uncon-
strained algorithms. Therefore, it is virtually never worthwhile to transform bound-constrained
problems (in fact, it is often beneficial to add bounds on the variables — sce below), and it is
rarcly appropriate to alter linearly constrained problems.

(Sl o e ol Sy A A -t AOn diean s ok Sent Jets e

Practical Aspects of Nonlincar Programming

12
[

- v -

Transformations can be uscd effectively to transform nonlincar constraints into simple bound
constraints (for cxample, by using polar coordinates instcad of cartesian coordinates to deal with
range constraints of the form { < Y- z? < u). However, carc should be taken to ensure that the

k.
o
.

-~
-~
Y

transformation docs not lead to a new problem that is more difficult to solve, or has additional

(spurious) solutions.

V. Do not attempt to eliminate equality constraints from the problem.

Modecllers often assume that since there may be no physical significance to a point at which non-
linear equality constraints are violated, such constraints should be satisfied cxactly at all stages of
the optimization. Accordingly, uscrs often attempt to “climinate” nonlincar equality constraints
from the problem by the following method. The variables are partitioned into “indcpendent”

and “dependent” scts. The minimization is then performed only with respect to the independent
variables, and the dependent variables are determined by “solving” the cquality constraints. To
be more precise, let z denote the vector of dependent variables and u the vector of independent

variables. The constrained problem

minimize F(z,u)
“,z

subject to ¢(z,u) =0,

— . . - —
,.-;,,‘-’: Ve -
TR B B

is solved by expressing c¢(z,u) = 0 as z = T'(u) for some transformation T', and then minimizing
F(T(u), u) with respect to u. This stratcgy is particularly common when there are special fast
methods for solving the equations ¢(z,u) = 0.

We do not recommend this approach if the constraints have any significant degree of nonlin-
carity. Firstly, it is difficult to impose any simple bounds upon the dependent variables. Sceondly,
the resulting algorithm is of the “constraint-following” type, which will tend to be less clficient
than other mcthods. Our cxperience is that the total computational cffort required to solve for
the dependent variables at cvery trial point is not usually worthwhile, compared to cxpending a
similar amount of cffort in the optimization without climinating the variables. The user would
be better advised to use a general nonlinear progranmuning method.

V1. Distinguish between “hard” and “soft” constraints.

In many problems, the bound coustraints may be classilied ax cither *haed” or “solt”. For
example, hard bounds could specify the region in which the problem functions are well-defined.
A soft constraint might represent a bound whose violation we are prepared to tolerate if this
resulted in a large decrease in the objective function. In some cases, variables may have both a
soft bound and a hard bound.

A good method of treating a soft bound of the form z; > b; is to exclude it from the simple
bound constraints and include it in the objective function in the form of a mild penalty term of
the form %p.- |z - b.-]_’,, where [y]- denotes the function min{0,y}. Modest values of p; do not .
lead to the severe ill-conditioning that occurs with traditional penalty methods. If the variable -.

is also constrained by a hard bound, the constraint can be treated explicitly in the usual way. '_ff{-}i
1

e + VEEB

b P arur aun i atue e

PO AFIL PO i gu A P S AP e S Bl e o A T Gl i 0 e it il A et e BT S-S T S G B I

Practical Aspects of Nonlinear Programnming *) 5

As a general rule, the presence of simple bounds simplifies a problem by reducing dimension-
ality. Howcver, if a bound has only a slight impact upon the problem (i.c., if the objective function
does not change rapidly as the bound is perturbed), the degree of difficulty of the problem may
be increased because the algorithmm needs to resolve small Lagrange multipliers. If many of the
bounds with small multiplicrs would be classified as “soft”, the use of a penalty term tends to
remove these constraints from the active sct.

Similarly, a penalty function of the form %p.-(a:; —d;)? can be used to produce a solution that
is biased towards some “desired” value d.

VIii. Avoid modelling near-dependent equality constraints

Constraints occur in problem formulations for a varicty of rcasons. Often the very nature of the
variables imposes an cquality constraint --- for example, if the variables {z;} represent proportions
or probabilitics, this gives rise to the constraint Y z; = 1 (as well a8 non-negativity rostrictions).
Constraints of this type are “genuine” cqualities, in the scnse that the computed solution must
satisfy them cexactly (where “exactly” mcans “within working precision”). However, it is not un-
usual in modelling that constraints that might seem initially to be firm equality constraints should
be treated instead as constraints that nced not be satisficd with maximum possible accuracy. For
example, this situation occurs when the underlying model is known to contain inaccuracies. In
some problemns, forcing constraints of this type to be cqualities may cause there to be no fea-
sible solution, or may distort the propertics of the solution if the corresponding constraints are
ill-conditioned.

We shall use a simple two-dimensional example to illustrate not only the the potential diffi-
culties associated with dependent constraints, but also one simple method for dealing with them.
Suppose that we require the minimum of a function of two variables subject to two independent
lincar cquality constraints. In this case, the solution lics at the point of intersection of the con-
straints (the objective function has no influence on the solution). However, suppose that one of
the two constraints is really a copy of the other, but that dwe to small errors in the modelling
process, the constraints are not exactly dependent. Now, the two constraints are nearly parallel
and the point of intersection lics at a point that way be very different from the solution of the
essenlially equivalent problem posed with a single constraint,

A clue to one method of resolution of this difliculty lics in the obscrvation that if one or
the other of the constraints were ignored during the optimization, it would be violated by only a
very sinall quantity. Supposc that cach dependent cquality constraint is replaced by an incquality
constraint with a very narrow range. For example, the lincar constraint a”z = b would be replaced
by

b-6<aTz<b+,

where 6 is a small, but not negligible, positive quantity. (Exactly the same transformation can be
made for a nonlinear constraint.) In the exanple above, the active-set strategy of the optimization

6 Practical Aspccts of Nonlinear Programming

procedure will decide that a lower value of the objective function is achieved if one of the equality
constraints is not satisfied exactly at the solution.

In Section 3.5 we shall use this type of range constraint in mcthods that arc robust on
problems with dependent constraints, and show that the idea of allowing certain constraints to
be violated by a small quantity recurs in many practical solution techniques. This is only to be

expected, since it is never possible to satisfy constraints exactly in finite-precision arithinetic.

VIl Use information about the problem to scale the variables and constraints.

It is well known that the “right” scaling of variables and constraints can dramatically improve
the efficiency and accuracy of optimization methods. The scale of a problem is the measure of
the relative importance of the variables and constraints — or, equivalently, the scale of a problem
is a statement of what is “large” and what is “small” in a problem.

In the absence of any other information, an algorithm will generally assume that cach variable
or constraint has equal weight in the optimization. For example, if a unit change in a variable
produces a small change in F comparcd to other variables, the algorithin will tend to make a
larger change to that variable. Clearly, if the variables do have equal significance, this situation
is quite satisfactory. However, if the small variation in F is duc to the fact that the objective
function is almost independent of the variable, the problem should be rescaled. (Note that in this
case, fixing a variable or constraint is an acceptable form of problem scaling.) ,

The most common form of scaling is to define new variables and constraints using a linear
transformation. (For simplicity, in the following discussion we shall assume that the nonlincar
constraints are cqualities of the form ¢;(z) = 0.) Supposc we defiue new variables £ and constraints
¢ such that

z=D,Z and &= Dae, (1.2)

where Dy and D; arc nonsingular matrices (usually diagonal). With this scaling, the deriva-

tives of the original and transformed objective function are related by V. F = D;VF and
V2F = D,V?FD,. Simil;irly, for the constraints we have A = D3 A, where A and A are the
Jacobian matrices of the original and transformed constraints. When Dy and D3 are diagonal, an
interpretation of the sealing (1.2) is that Dy and D “rank” the clements of the gradient vector
and constraints so that cach is of cqual importance.

The important thing to bear in mind is that a badly scaled problem is essentially an ill-
conditioned problem. Badly scaled variables lead to ill-conditioned Hessian matrices; badly scaled
constraints give risc to near-singular Jacobian matrices. Within optimization routines, conver-
gence tolerances and other criteria are necessarily based upon an implicit definition of “small”
and “large”, and thus variables with widely varying orders of magnitude may cause difliculties
for some algorithms. A

Arguably the most important rule of scaling is that the variables of the scaled problem should
be of gimilar magnitude and of ordeér unity in the region of intercst. If typical valucs of all the
variables are known, a problem can be transformed so that the variables are all of the same order

PR A |
P T
Ve ,
SR
A] .
JPOF UGl LN

P
PR
[T

v R

Practical Aspects of Nonlincar Programnming 7

o of magnitude. In this case, the transformation D, of (1.2) is a diagonal matrix whosc elements
n are typical values of z.

An important property of a theoretical algorithm is that of invariance with respect to the
“ scaling (1.2). A scale-invariant algorithmn has the property that when it is applicd to both the
- original problemn and the transformed problem, the resulting sequences of iterates {z;} and {Zx}

. satisfy zx = D Zx for all k. This property does not imply that it is unnecessary to choosc a
scensible scaling for a problemn when a scale-invariant algorithin is being used. Scale-invariance

cannot be achieved in a practical implementation of an algorithm. Not only is computer arithmetic

not scale-invariant, but also it is impossible to devise a scale-invariant test that an algorithm has

u converged to a point which satisfies the necessary or sufficient conditions. Many algorithms
' treat quantitics that arc “sufficiently small” in inagnitude as “ncgligible” (in cffect, as zero).
However, since there is no universal definition of “small”, it is impossible to formulate a scale-
invariant procedure for distinguishing between quantities that should be treated as zero, and
scale-dependent. quantities that should not be neglected. To illustrate this point, consider the
application of any quasi-Newton method that is scalc-invariant in the sense just described. If the
algorithm were applied to the scaled and unscaled problem, we may regard the two sequences
{zx} and {Ei} as belonging to two different spaces. Each value z in the z-space is related to a
value Z; in the £-space by the formula Z; = Djiz,. The optimality test of the algorithin must
involve consideration of the magnitude of the gradient norin. However, since the gradient norm is
tending to zero with a different value (vither ||gi|| or || Dygkll) in cach space, this optimality test
cannot be made scale-invariant. Thus, the number of clements in cach sequence may be different.
Furthermore, the initial cstimate of the Hessian is alimost always defined as a unit matrix. If this

is done in both the z- and &-spaces, the scale invariance is immediately lost.

Another part of an algorithm that is unavoidably scale-dependent is the criterion for deciding
when a nonlinear constraint of the form ¢;(z) = 0 is satisficd. Given a constraint value, say
ci{z) = 10 "4, it is necessary to know something abont the natural scaling of the problem in order
to make a sensible decision about whether the constraint is sufficiently close to zero. The only
way of overcoming this problem is to let the user decide when a constraint is suflicicntly satisfied.
This leads to the idea of a user-defined feasibility tolerance 8 that defines what. is really “small”
for each comstrainl. For example, the part of the termmination eriterion that concerns the test for

feasibility would require that |e;(z)] < 6; for each constraint.

IX. Try to provide as much information about the function as possible.
As a general rule, algorithms tend to be more successful and robnst when more information about

the problem is provided. For example, if the problein functions are smooth, algorithms that use

first and second derivatives perform much better than algorithms that use function values only. g

It is generally perecived that a second-derivative algorithm is rarcly useful because the cost -
of computing the sccond derivatives may be several orders of magnitude larger than that of cal-
culating first derivatives. This is undoubtedly true in some situations, but there are a remarkably i

T W A A TP e e ——w——w ——— —— - T —— e

8 Practical Aspects of Nonlinear Programming

large number of problems for which the first and second derivatives of the problem functions may
be obtained for about the same cost — for exammple, geometric prograinming probleins, where the
objective and constraint functions are of the form (1.1). Morcover, it is relatively straightforward
to design software that will automatically differentiate the original problem functions.

Other examples of problems with cheap higher derivatives occur in exponential fitting and

factorable programming (for example, sce McCormick, 1983).

X. Take special care to check that the problem functions and their derivatives are programmed

correctly.

Bcfore embarking on a scrics of optimization runs, the user should verify that the code which
defines the problemn fanctions is correct. One obvious check is to evaluate the problem functions
at a point where their values are known.

Errors in programming the function may be quite subtle in that the function value is “al-
most” correct. For cxample, the function may be accurate to less than full precision because of
the inaccurate calenlation of a subsidiary quantity, or the limited accuracy of data upon which
the function depends. A common crror on machines where numcrical calculations are usually
performed in double precision is to include cven one single-precision constant in the calculation
of the function; since some compilers do not convert such constants to double precision, half the
correct. figures may be lost by such a scemingly trivial crror.

Incorrect caleulation of derivatives is by far the most common user error. Such crrors are
almost never small, and thus no algorithm can perform correctly in their presence. This is why
we recomnmend that some sort of consistency chieck on the derivatives be performed. The most
straightforward meaus of checking for errors in the derivative involves comparing a finite-differencze

approximation with the supposedly exact value.

1.3. Some uscful features of an implementation. In the following, we give some features
of an “ideal” implementation that would help the user apply the modelling principles most of-
fectively. This list is not intended to be exhaustive and we have included somne items in the list
that have uot been referred to in the text. We do not claim that it is possible to implement every

feature in all circumstances.

e The method should treat simple bounds, linear constraints and nonlinear constraints
soparately. Morcover, the method should cffectively deal with nonlincar constraints,
yot remain competitive with unconstrained or linearly constrained methods if constraint

nonlincaritics are not present.

o There should be the option of computing the problem functions only at points that
satisfy the lincar constraints. '

e The software should print all the inforination necessary for the user to check how
closcly the final point satisfics the necessary and sufficient conditions for an optimum.

¢ The user should be able to specify a feasibility tolerance for each constraint.

L T T N T AT VD PR r— 5 EafiiSal e M e Bt St S

Practical Aspccts of Nonlincar Programmning ’ 9

o It should be possible to solve problems for which the precision of the problem functions
is not nccessarily close to the machine precision.

o The user shoukld be able to scalc the problemn by specifying the scaling matrices Dy
and Dg of (1.2).

e The user should have the option of checking the problem derivatives before starting

the minimization.

2. Quasi-Newton methods for unconstrained minimization

Quasi-Newton methods arc iterative, and gencrate a sequence {z;} that is intended to converge

to . At the k-th iteration, the new iterate is defined by

Tk+1 = Tk + kP, (2.1)

where a; is a non-negative scalar called the step Iength, and py is an n-vector called the scarch
direction. These methods utilize the values of the problem functions and their gradients at trial
iterates, but do not assumc the availability of higher derivative information. (When explicit first
derivatives are not available, quasi-Newton methods can be implemented nsing finite-difference
approximations to the gradient -— see, c.g., Gill, Murray and Wright, 1981.) A typical iteration
of a quasi-Newton method comprises three related parts: computation of pi, choice of oy, and
updating the necessary matrix factorizations. ' ‘

The scarch direction py in unconstrained optimization is defined by the equation Hypg = —gx,
where Hj is an approximation to the Hessian matrix of F. Many computational benefits accrue
from updating a factorized form of . Suppose that H, = RZ'II,,, where IR is an upper-
triangular matrix (Lhe Cholesky factor of Hy). The scarch direction is then obtained by solving
two triangular systeins:

RTq=-g, and Ripr =gq. (2.2)

The main purpose of the linescarch is to force steady progress by computing a step length oy
such that F(zx + agpe) is “sufficiently less™ than F(z); i.c., the deercase can go to zero only as
the solution is approached.

It ix widely accepted today that the best quasi-Newton update is given by the BEGS formula:

1 1
Hipy = Hy — ——u uf + —— Y y7, 2.3
k-+1 k uzvsk“k“k+ yz'skykykv (2.3)

where 8g = Zpyy — Tk, ux = Hisg and y = g1 — g If Hy is positive definite, Hy) as defined
by (2.3) will be positive definite if and only if the approximate curvature yJ's, satisfics

Yis, >0 (2.4)

(sce Dennis and Moré, 1977).

.........
PR)

e

T - T T ————— T LM Brds S Sras e aeut el Jund L BM SO - MR et -n il

10 Practical Aspects of Nonlinear Programming

Dennis and Schnabel (1981) have shown that the BFGS update (2.3) may be expressed as a
rank-one update to R, Let 8 and 4 denote the scalars (ufsk)% and (y{sk)% respectively. The
BFGS update may then be written as Hg g = I-Ef_._ 1Rk +1> Where

_) 1 1

Riy1 = Ri +vwT, with v= ER"S"’ W= —Yg — Euk.
The matrix Ry, which is not upper-triangular, may be restored to upper-triangular form by
finding an orthogonal matrix P such that '

PRit1 = Ry,

where Ry, is upper triangular. Then Heyy = RT, (R, b= RZ‘+,1PTP1—2,¢+1 = RY Ry, a8
required. A suitable matrix P can be constructed from two sweeps of planc rotations; for more
details, see Gill et al. (1974).

Since py satisfies Hipr = —gk, two matrix-vector multiplications may be avoided in the
implementation of the BFGS update (2.3). Substituting from (2.2), we obtain

1 1 1
==-q and w= -y, + —gk,
o v o

where 0 = |gTp, |3 and 7 = (yTs,)7.

Representation of Hy by its Cholesky factors avoids a scrious problem that would otherwise
arise in quasi-Newton methods: the loss of positive-definiteness throngh rounding crrors. With
exact arithmetic, satisfaction of (2.4) should ensure that the BFGS update gencrates strictly
positive-definite Hessian approximations. However, in practice the formula (2.3) can lead to a
singular or indefinite matrix Hy,y. When Hg is represented by its Cholesky factorization and
updates are performed directly to the factorization, every Hy will be numerically positive definite.

Maintenance of positive-definiteness is considered to be a crucial clement in the success
of quasi-Newton methods in unconstrained optimization (sce Dennis and Moré, 1977). In this
context, the linesearch can also have the important function of gnaranteecing that condition (2.4)
holds at. every iteration. In particular, methods of safegnarded polynomial interpolation (see,

c.g., Brent, 1973; Gill, Murray and Wright, 1981) can find a value of ax that satisfics
F(zi) — F(zg + axpy) 2 —porgicpy, (2.5a)
lo(z + @ps) Pl < ~ngiprs (2.5b)
where 0 < g < 5 < Land p < }. Condition (2.5a) ensures a “sufficicnt decrcase” in F, and (2.5b)
guarantees satisfaction of (2.4).

A popular alternative linesearch technique is known as backtracking (sce, c.g., Dennis and
Schnabel, 1983). Given a fixed 0 < p < 1, a sequence {5} is generated that satisfies fp = 1 and

. Practical Aspccts of Nonlinear Programming °) 11

- .
h B; > Bji1 2 pBj. The value of ay is taken as the first element in the sequence {8;} satisfying
: the sufficient decrease criterion

2 F(zy) ~ F(zk + Bipe) = —bBigrpes

where 0 < g < 1. Since a backtracking method can never gencrate a value of a greater than
unity, (2.4) may not hold. Most implcnicntations of unconstrained quasi-Newton methods with
a backtracking linesecarch simply skip the update in this case. (As the iterates converge, (2.4) is
satisfied for the initial step of unity, and hence the difficulty docs not arise in the limit.) The
simplicity of backtracking algorithmus and their utility in convergence proofs have led to their
frequent appearance in the literature.

3. Methods for nonlinecar equality constraints

3.1. Basic theory and notation. In this scction, we consider mcthods for problems that
contain only nonlincar equality constraints, i.c. '

NEP minimize F(z)

ZER"

subject to ¢i(z) =0, i=1,...,m.

We concentrate on this simpliﬁcd problem in order to cmphasize the trcatment of nonlinear
constraints,

The Kuhn-Tucker conditions for NEP state the cxistence of an m-vector X' (tlic Lagrange
multiplier vector) such that

a(z') = A()TN. (3.1)

(For a detailed discussion of first- and sccond-order Kuhn-Tucker counditions for optimality, sce,
for example, Fiacco and McCormick, 1968, and Powell, 1974.)

Let Z(x) denote a matrix whose columns form a basis for the set of vectors orthogonal to
the rows of A(z); i.c., A(z)Z(z) = 0. An cquivalent statement of (3.1) in terms of Z is

Z(z*_)'rg(g;*) =0. ‘:1

The vector Z(x)Tg(x) ix termed the projected gradient of F at z.
The Lagrangian function

L{z,p) = F(z) - pTe(z),

where g is an m-vector of Lagrange-multiplicr cstimates, plays an important role in understanding

o

P i

A i »

. R S .

. S ot
PUAPLILY UL S N

o1

LR |
..".';L . . N l'l [

and solving constrained problems. Condition (3.1) is a statcment that Zisa stationary point

(with respect to z) of the Lagrangian fanction when g = X One of the sccond-order sufficiency
conditions for optimality is that the projected Hessian of the Lagrangian function,

| Z(z)TV3L(z,4)2(2) = Z(x)T(VzF(z) - Zm:p.-vzc.-(z)) Z(z),

=1

v
3
ske_0 0

Vot
R
0

DY W YWY

12 Practical Aspects of Nonlinear Programming

is positive definite when z = o p= X

In the following, we consider sequential quadratic programming (SQP) methods for NEP,
in which the scarch direction is the solution of a quadratic programniug sibproblem and the
steplength achicves a sufficient reduction in some “merit function”. The purposc of the merit
function is to cuforce steady progress to the solution by balancing the (usually) conflicting aims
of reducing the objective function and satisfying the nonlinear constraints.

The quadratic progranuning subproblein is of the form:

1
mi;ggnnizc gip + EpTHkp (3.2a)
subject to Axp = —cy, (3.2b)

where ¢ and Ag denote ¢ and A cvaluated at zx. The so-called linearized constraints (3.2b) repre-
sent a first-order approximation to the nonlincar constraints of the original problem. The matrix
H; is an approximation to the Hessian of the Lagrangian function. The Lagrange multiplier
vector of this subproblem (dcnoted by puy) satisfies

Hipr + a = ATy,

and may be used as an estimate of X'

SQP mcthods differ in their definitions of the matrix Hy, and, as we shall sce later, formula-
tion of the QP constraints (3.20). In the next two scctions, we shall see how the choice of matrix
M is related to the method used to solve the equality-constraint QP (3.2).

3.2. Mcthods for cquality-constraint QP. All mcthods for solving (3.2) may be vicwed as

alternative methods for solution of the angmented system of equations for p and u

(2)(0)-=-(0)

which expresses the optimality and feasibility conditions. (The subseript k has been suppressed

for convenieuce.)

Mcthods for solving (3.3) are often based upon constructing an equivalent, but simpler,
system. Let S be a nonsingular (n +m) X (n + m) matrix. The solution of (3.3) is equivalent to
the solution of

o5 YD) (Do) o

We shall consider two comnnonly used choices for § derived from the LQ factoriration of A:
an m X m lower-triangular matrix L and an n x n matrix Q such that

AQ=(L 0). (3.5)

. . S w S T
s e P A R W]

‘et e e e
P

W Tt .
SRR S S S

Practical Aspects of Nonlinear Programuning : 13
Assume that the columns of Q arc partitioned so that

Q=(Y Z),

where Y has m columns. Then let § be given by

sz(y z 1), (3.6)

and let p, and p, denote the first m and last n — m clements of P, respectively. Substituting
from (3.6) into (3.4), we obtain '

YTHY YTHZ LT Py Y7y
ZTHY ZTHzZ p: | =-| 2%
L —i c

Thus, p and p# may be found by solving the equations

Ipy = —c¢ (3.7a)
ZTHZp, = -Z%9 - ZTHYp, (3.75)
p=Yp, + 2Zps (3.7¢)

LT =YT(g + Hp). (3.7d)

Note that the projected Hessian matrix ZTH Z appears cxplicitly in (3.7b). If (3.2) has a well-
defined solution, this matrix is positive definite. ’

We consider two definitions of L and Q. In the methods of Gill and Murray (1974), Wright
(1976), Murray and Wright (1978) and Gill ¢t al. (1984c¢), L and Q arc found by cxplicitly
trinngularizing A using Houscholder matrices or stabilized clementary matrices. In this paper,
we consider only the use of Honscholder matrices, in which case the matrix @ is orthogonal.

Computation of the LQ factorization may be viewed as updating an existing factorization as
new rows are added in the last position. Assume that the LQ factorization (3.5) of A is available,

and consider the matrix A, which is A augmented by the row aT. Then
- A - L 0
AQ = Q=L= 38
a=(z)e=i=(nr). o2)
where ¢ and s are the relevant partitions of Q7a. Lot Q denote a Houscholder matrix of the formn
~ 1
Q = I - Euur,

where the vector 4 and scalar 8 are chosen to annihilate all but the first clement of s, and to
leave ¢ unchanged. (For details of how these quantitics are defined, see Stewart, 1973.) Then

.~ L 00
tT r 0 (3.9)

or AQ=(L 0), where @ =QQ.

!

-0

e
el

LA D N
I'l‘

14 , Practical Aspects of Nonlinear Prograinming

The so-called “standard” LQ factorization is a version of (3.8) and (3.9) in which the rows
of A arc added to the null matrix one by one. The initial Q matrix is taken as the identity,
and the initial L is the null matrix. While computing the factorization, the scquence of House-
holder transformations is stored in compact form (i.e., @ is not stored cxplicitly); the vector a7Q
neceded in (3.8) is obtained by applying the sequence of stored transformations. Once the initial
factorization has been completed, the necessary explicit matrix @ is obtained by multiplying the

compact Houscholder transformations together in reverse order.

A sccond choice for the matrices L and @ involves defining @ so that

QTHQ = I (3.10)
In this case, ZTHZ = I and ZTHY =0, and the cquations (3.7) for p and u become
Lp, = -¢ (3.11a)
p:=-2"g (3.118)
p=Yp, + Zp. | (3-11¢)
LTu=YTg+p,. (3.11d)

The reenrrence relations (3.8) and (3.9) may be adapted to compute Q satisfying (3.10) by
defining the initial Q matrix to be R™1,
Equations (3.11) arc used to solve the augmented system in the QP method of Goldfarb

and Idnani (1983). Similar techniques have been suggested previously for both positive-definite

and ind finite quadratic programs. In the latter case, the relationship ZTHZ = D is maintained
instead of (3.10), where the matrix D may be diagonal (Murray, 1971) or block-diagonal (Bunch
and Kanfinan, 1978).

3.3. Propertics of the SQP. scarch direction. It is clear from (3.7¢) that the scarch direction
is the sum of two vectors: a range-space component p, (= Yp,), and a mll-space component py
(= Zp,). The range-space vector satisfies the underdetermined equations (3.20), and thus defines
a step to the lincarized versions of the noulinecar constraints. (If the columns of Y arce orthogonal,
P defines the step to the nearest point on the lincarized constraints.) The null-space compo-
nent py defines the step from zi 4 p,, Lo the minimun of the quadratic model of the Lagrangian
function in the subspace orthogonal to the constraint normals. An explicit. distinetion between
the aims of satisfying the constraints and minimizing the Lagrangian function is important be-
cause the properties of the equations that define the associated vectors are essentially diffcrent.
The range-space vector is a Newton step in the sense that it is computed using exact derivative
information. By contrast, the null-space component is a quasi-Newton step defined using ap-
proximate derivative information from . The better accuracy of the range-space commponent
implies that |le|| generally remains smaller than || Z7g|} as the solution is approached. During the
final iterations, the behavior of SQP mcthods is characterized by the relationship

o /im0 (3.12)

L . T T UL I A S I PRI Tt et et T e EIR R R TR e O N
LT St Tt G et e ST DRI PN AT I P TR N P
Lt et et . . . et RSP PR BT S I S S P R S ST S S DR RS N T ST S S N Rt B TS
SEnemeue bt utrsitimtmitvintriintvitsintuitvissdadetbadtcitistictdhtitisnictivadosibtdtdend b tcnitiitdtistioti i d bt udeaktd

S
<
L
..'...‘
- .‘_‘1
o
."...'
e |
0
O
..*.-.\
SR
RS
w3
LI
S
.-
L1
2
T
A
° '1
S0
‘1
o
i
."':j
e
RS
‘~"-."“
.

U Tl e,
R atal atedad

Practical Aspects of Nonlinear Programming 15

i.c., the final search directions lie almost wholly in the null space of A.

3.4. The definition of Hi. Bascd on its success in the unconstrained case, the BFGS forinula
(2.3) secmns a logical choice for updating an approximation to the Hessian of the Lagrangian
function. However, the definition of the updating formula in the constrained case is complicated
by the fact that there is some choice as to which matrix should be approximated.

An important feature of the BFGS update in unconstrained optimization is the maintenance
of positive-definiteness. In the constrained case, the rclevant positive-definite matrix is the pro-
jected Hessian ZTI[Z. Accordingly, the first class of methods that we shall consider is based
on maintaining a quasi-Newton approximation H; to the projected Hessian. There are many
closcly-related variants of this approach. For example, for lincarly constrained problemns, sce Gill
and Murray (1974) and Murtagh and Saunders (1978). For nonlincarly constrained problems, sce
Murray and Wright (1978), Coleman and Conn (1982), Gabay (1979), and Nocedal and Overton
(1982). A typical update for methods in this class is

7 1 r, 1 T
H,=H, ug.s‘u,u, + y}'s, Y:Vm (3.13)

where barred quantitics refer to the updated values, g, = 279, y; = §z — 9, 85 = Z7(z - z)
and u, = H,s2,. For these projected quasi-Newton methods, the matrix H that defines the QP
subproblem (3.2) is ZH,Z7T, which is positive semi-definite. A common feature of the projected
quasi-Newton methods mentioned above is that the null-space component of the scarch direction

is defined from the cquations

Hyps = ~gx

in order to avoid the necessity of recurring the matrix ZTHY (cf. (3.7b)).

In contrast to the unconstrained case, it is not always possible to choose a step length that
gnarantees the condition yTs, > 0. As a result, there may be iterations in which the quasi-Newton
update cannot be performed becanse of loss of positive-definiteness. However, since (3.12) implics
that the search dircctions will lie in the mnll space of A as the iterates converge, yTs, is typically

positive in the neighborhood of the solution.

An immediate consequence of storing only an approximation to the projected Hessian is that
the QP mmltipliers g cannot be computed, since the full matrix K is not available (¢f. (3.7d)).
However, if @ is orthogonal, the least-squares multipliers A, at a point z may be calculated from
the equations

LT), = YTy(z).

The continnity properties of the associated Z are significant in projected quasi-Newton meth-
ods becanse Z defines the operation of projection. For example, in proving local convergence for
algorithms that explicitly utilize Z, it is essential that sinall chauges in z shounld lead to small
changes in Z (sce, o.g., jolcmmn and Conn, 1982a, b; and Nocedal and Overton, 1982). The

- Ve TR, WL

16 Practical Aspcects of Nonlincar Programming

standard mcthod of computing the LQ) factorization docs not provide a continuous representa-
tion of Z(z) (sce Coleman and Sorcnsen, 1984). However, a continuous representation of Z may
be defined using a trivial modification of the relations (3.8) and (3.9). Recall that, given the
factorization (3.5) of the matrix A, we require the factors L and Q of A4 at the point Z = z + ap.
Exactly as in the standard factorization, (3.8) and (3.9) can be used to update the factors as
the rows of A arc added to the null matrix one by one, except that the explicit watrix Q from
the previous QP subproblem is taken as the initial matrix @ in (3.8). Each Houscholder trans-
formation is then multiplied into Q after the corresponding row has been transformed. With
the standard procedure, the Houscholder transformations can be stored in compact form, but
with this approach, cach new row of A must be transformed by a full orthogonal matrix (which
is somcwhat more expensive unless some of the constraints are lincar). The benefit is that Z is
continuous at a point where A has full rank, and approaches a limit when computed at a sequence
of points {z;} converging sufficicntly fast to a suitable point Z (sce Gill et al., 1985a).

The second major representation of Hy, is as a quasi-Newton approximation to the full Hessian
of the Lagrangian function. (This method is especially appropriate if the calculation of the scarch
direction requires the fll Hessian, e.g., the method defined by cquations (3.11).) Consider a
BFGS-type update of the form

© = 1
H=H- u—Ts-uuT-f- ;—va, (3.14)

where s = # — z and u = Hs. Since H is meant to approximate the Hessian of the Lagrangian
function, a “patural” choice for v would be y,, the difference in gradients of the Lagrangian
function; i.c.,

Y=9-9~ (AT - AT)'\a

with A taken as the best available multiplier estimate. However, since £ is not an unconstrained
minimum of the Lagrangian function, it may be impossible, with any linescarch, to find a step
length for which yTs is positive. Hence, the update might be skipped at every iteration, which
would not only destroy the local convergence propertics, but also adversely aflect the efficiency
of the method away from the solution,

A popular method for dealing with this difficulty is to use y, as v in (3.14) only when yTs
is sufliciently positive; otherwise, v is taken as a perturbed vector §, such that §7s > 0. A
perturbation that we have found to be quite successful in practice is defined as follows. When
yTs < 0, compute the scalar
o= ¥
sT(ATé ~ ATc)
The quantity in the denowminator is an approximation to the curvature of ||c||3, which is positive
at 2*. If @ is negative, the update is skipped; otherwise,

v =y, +w(ATe - ATc),

DDA MR gt 2o ae |

ety S e . . LRt
g Tt g gt a e T

e
e
LT S A

pPREEY

DU

L

o
1. & & 8 oA

S
R A

Practical Aspects of Nonlinear Prograunning °) 17

where w is any positive scalar such that w > @. The motivation for this choice of v is the result
(duc to Boggs, Tollc and Wang, 1982) that a necessary condition for g-supcrlincar convergence is
that the approximate Hessian matrices must satisfy

. 2,2 (Hx - V2L, X))pell

lim =0.
k—vco : llpxll

3.5. Inconsistent and ill-conditioned constraints. In the preceding discussion of SQP
methods, we have assumed that the cquations (3.2b) arc consistent. When all the constraints of
the original problem arc linear, th. subproblem constraints can be inconsistent only if the original
problem has no solution. With nonlinear constraints, however, the constraints of the subproblem
may be inconsistent cven when the original problem has a well-posed solution. Techniques for
dealing with inconsistent constraints fall into two major categorics. In both cases, the search
dircction satisfics a shifted sct of lincar constraints

Ap=r—c. (3.15)

The first approach gencrates a search direction designed to minimize a weighted combination
of the quadratic approximation to the Lagrangian and the residual vector of the mmperturbed
constraints (the vector ¢ + Ap). The compromise is achieved by choosing p as the solution of an
uuconstrained problem of the form

winimize o(g7p + %pTH p) + ®(c + Ap), (3.16)
P

where ®(r) is a scalar-valued -function that measures the “sizse” of r, and o is a non-negative
scalar. The theoretical basis of this class of method is that a minimum of (3.16) always cxists,
even when a solution of the QP subproblem (3.2) does not.

The algorithms of Biggs (1972a), Bartholomew-Biggs (1982) and Fletcher (1981) correspond
to choosing ® as the two-norin and onc-norm, respectively. In cither case, it can be shown that
the unconstrained minimizer of (3.16) is the solution of a QP with objective function (3.24) and
constraintz (3.15). The form of the veetor £ depends on the definition of . I d(r) is defined as
;'z||r||§, all the components of r are generally now-zero, and p is defined by equations similar to
(3.11) (see Bartholomew-Biggs, 1982, for more details). If ®(r) = ||y, p is *he solution of an ;-
QP (sce Fletcher, 1981). At the solution of this problem, a subset of the original constraints (3.25)
will be satisfied exactly (i.c., the corresponding components of r will be zero). This approach
therefore implicitly “discards” some of the violated constraints fromn the subproblem.

The methods of Bartholomew-Biggs and Fletcher are based on the propertics of peualty func-
tions (see Fletcher, 1983, for a survey). A feature of these treatments of inconsistent constraints
is that ¢ is always non-zcroin (3.16). An alternative approach is to define the composite function
only when the constraints are found to be inconsistent. Other SQP methods with a strategy of

PP AR AT TR T AR I L .
MRV Tl JIY WP BT TN S LI S B ILA e

18 Practical Aspcects of Nonlinear Prograinming
F‘ this typc have been suggested by Powell (1977), Schittkowski (1983), Tone (1983) and Gill et al.
= (1984b).

The sccond technique for the treatinent of inconsistency is based on the obscrvation that
only the range-space portion of the QI search direction is ill-defined when the constraints are
incompatible. With this approach, a well-defined procedure is used to compute py,, and p; and p
arc obtained from (3.7b) and (3.7¢). The most straightforward application of this approach is to

define p, as a solution of the linear least-squares problem
minimize ||c + Apell2, (3.17)
PR

which gives r as the smallest constraint shift (in the least-squarcs sense). This choice of pg
is cquivalent to computing the first iterate of the Gauss-Newton method for minimizing the
two-norm of the nonlincar constraint violations. Thercfore, the strategy for dealing with the
constraints has changed from the possibly unsolvable problem of finding a point such that ¢(z) = 0
to the always solvable problem of minimizing 3 e?(z).

Since A must be rank-deficient when the constraints are inconsistent, the solution of (3.17)
is not unique. A suitable choice of p,, in this case is the minimum-length solution, which can be
computed using the complete orthogonal factorization:

L 0
PAQ:(OO),

where I’ and @ arc orthogonal matrices and L is a lower-triangular matrix whose dimension is
equal to the rank of A.

Unfortunately, neither of these techniques resolves the difficultics caused by constraints that
are almost inconsistent (i.c., ill-conditioned). Il-conditioning in A will tend to cause p,, to be large
in norm (sce (3.7¢)). In these sitnations it is necessary in practice to limit the norm of p. It might
appear that the lunst.-]('ngth solution of (3.17) would automatically be satisfactory. However, the
computation of p using the r(-nnpl('t.c orthogonal factorization involves serious practical difficultics

- in particular, a strategy must be included for estimating the rank of A. It is well known that

the definition of pumerical “rank” ix problem-dependent. The rauk can never be determined

without making an explicit judgment about scaling, i.c., a decision as to which quantitics can be

considered “negligible”. The choice of rank is critical in the Gauss-Newton method because a

'
PN

slight alteration in the value of the tolerance used to cstimnate the rank may lead to completely

a'a‘a

different behavior.

If the comnposite function (3.16) is used, an explicit bound on the norm of p may be enforced

L by temporarily imposing additional constraints on the problem. (This type of procedure is used
3 within trust-region algorithins for unconstrained optimization.) The cffect of the trust-region N
constraints is to modify (implicitly or explicitly) the derivative information that defines the search —_:j'.{'_

dircction. For example, if a temporary hound is placed on the two-norm of p, the search direction j.j:".

LI SR .
DN g e et - *
LIRAT R ST Y Ar S S 5 PGP AP . P S

Practical Aspccts of Nonlincar Programming : 19

satisfies equations in which the sccond-derivative approximation is modified by a multiple of the
identity matrix. Thus, ZTHZ and A arc implicitly modified — an unfortunate result, since we
would prefer the projected Hessian approximation to be independent of the conditioning of A.

The development of stable robust methods for dealing with ill-conditioned constraints is
still an active area of rescarch. One possible approach was suggested in Scction 1.2, where small
perturbations of constraints were used to resolve inconsistencies caused by modeclling inaccuracices.
By changing the constraints (3.2)) to suitable perturbed inequality constraints, (3.2) always has a
bounded solution. For example, consider defining p, as the solution of the inequality-constrained
quadratic program

minimize 3P7Pa
subject to —8 < App, +¢ <4, (3.18)

where § is a vector of small quantitics that are forced to approach the feasibility tolerances for
the original constraints as z approaches 2. The subset of constraints active at the solution of
(3.18) may then be used to define Z and Y, from which p, and p can be computed using (3.7).

4. Mcthods for nonlinear incquality constraints

4.1. Background. In the final problem to be considered, all the constraints are nonlincar
incqualitics:
NIP minimize F(z)

zCR")

subject to ¢i(z) 20, t=1,...,m,

We consider this simplificd form in order to concentrate on the treatment of nonlinear inequality
constraints.

Let the matrix A(z) denote the Jacobian of ¢(z). The constraint ¢ is said to be active at
z if ¢;(z) = 0, and violated if ¢;(z) < 0. The Kuhn-Tucker conditions for NIP are similar to
those for the equality-constraint case, except that they involve only constraints active at z, and
impose a sign restriction on the Lagrange multipliers. The major difference between inequality-
and equality-constrained problems is that the sct of constraints active at the solution is unknown
in the inequality case. Therefore, algorithms for NIP must include a procedure (termed an active-
set strategy) that determines the correct active sct — usually, by maintaining a working sct that
cstimates the active sct. In this section we discuss the additional algorithmic complexity in SQP
methods that arises specifically from the presence of inequality constraints.

4.2. Formulation of the QP subproblem. Droadly spcaking, two cxtreme types of QP
subproblems can be posed when solving incquality-constrained problems. The first — called an
IQP strategy — corresponds to reprosenting all nonlinear inequality constraints as incqualitics

............
P e e

El

R P ———————— D T ——— ™ — - — "~y e e el -

20) Practical Aspects of Nonlinear Programming

in the QP subproblem; this has been by far the most widely used forinulation in published SQP
methods. The standard IQP search direction is the solution of

e s T 1.T
nn;gggze g'p+ ap Hp (4.14)
subject to Ap > —¢, (4.1b)

where H is an approximation to the Hessian of the Lagrangian function and A is the Jacobian of
¢(z) evalnated at the current iterate. In general, the solution of (4.1) must be found by iteration.
Thus, the structure of an SQP method with an IQP strategy involves major and minor iterations
- the minor iterations being those of the quadratic programming wethod.

Because (4.1) includes all the constraints of NID, it is convenient to take the active set of
the QP as a prediction of the active sct of the nonlincarly constrained problem. The theoretical
justification for this strategy is that the QP (4.1) will make a correct prediction of the active
set of the original problem in a neighborhood of & for any bounded positive-definite matrix H
(Robinson, 1974). Furthecrmore, t! ¢ muitiplicrs of (4.1) approach the multipliers of NIP as the
iterates converge to o, and hence it is common to take the QP multipliers as the next multiplier

estimate.

The second extreme form of subproblem in SQP mcethods involves a QP with only equality
constraints. In order to nsc an EQP strategy, some determination must be made before posing
the QP as to which constraints are to be included. An EQP method should have the property
that it will sclect the correct active set in some neighborhood of T Thercfore, such methods
tend to vhoose constraints that satisfy properties of the active constraints in a neighborhood of
the solution - c.g., are “small” in mwagnitude, or satlisfy the sign requirements for the Lagrange
multiplier estimates. A benefit of an EQP method i that, in general, the subproblem will be

casicr to solve than one with incquality constraints.

To a large extent, the active-set strategy will determine the choice of quasi-Newton update
and Lagrange multiplier cstimate. For example, if an IQD strategy is used, the wmethod used to
solve (4.1) will require specification of the full matrix H. On the othier hand, an EQP strategy
is usnally implemented with an approximation to the projected Hessian. The (ollowing table

summarizes the major features of the two active-set strategies.

EQP QP
e QP subproblem: s QD subproblem:

TS T 1T e . T, 1,7
nn;négl'}ac 9'p+ 3pHp xm;ggnyc g'p+ 3p"Hp
subject to /ip = —¢, . subject to Ap 2 —c.

o Least-squares multiplicrs. e QP multiplicrs.

o Projected Hessian approximation. e Full Hessian approximation.
Thesc two active-set strategics arc the extremes of a whole range of possibilitics. Other

methods have been defined that use features fromn both approaches. For example, the method of

| A

. B
PSCILSCI . 1

Y W TR ——_—— T ——— AR S e S S A S0 SR

S tn on

Practical Aspects of Nonlincar Programming ’ 21

Schittkowski (1981) solves a QP subproblem of the form (4.1), but uses a pre-assigned working set
to specify which of the constraint gradients should be recomputed for the next major iteration.
Siwmilarly, it is possible to treat linear constraints with an EQP approach and nonlinear constraints
with an IQP approach (sec Gill et al., 1984d).

It is important to note that IQP methods can be implemented so that, as the solution is
approached, the amount of overhead per major iteration is the same as for an EQP method (i.e.,
solution of a single set of cquations of the form (3.3)). This can be achieved by solving (4.1) with
a QP mecthod that allows the active set from onc subproblem to be used to initialize the next.
Since the active set of the subproblem eventually becomes the correct active set for the nonlincar
problem, QP subproblems ncar the solution reach optimality in ouly one minor iteration.

4.3. Active-sct strategies in quadratic programming methods. Quadratic programming
methods for problems with incquality constraints solve a sequence of problems (3.3) in which the
constraints in the working set are treated as equalities. The major differences among QP methods
arise from the numerical procedures for solving the associated linear cquations, and the strategies
that control changes in the working set. (Modern QP methods are surveyced by Fletcher (1981)
and Gill, Murray and Wright (1981).)

We briefly outline two mcthods of sclecting constraints for the working set when solving (4.1).
At cach iteration, let p and A denote the current estimates of the solution and optinal multiplier
veetor, and let 7 denote the residual vector r = Ap + ¢. The “hat” notation indicates quantities
associated with the working set. The vector ép is defined such that 2 + &p is the solution of a QP
with the original objective function, subject to the constraints of the working sct held at equality,
amd 62 denotes the corresponding change in the multiplier estimate. As indicated in Section 3.2,

#p and 8) arc the solution of the linear system

(5) (=),

whicre gq denotes g+ Hp, the gradient of the quadeatic function. The algorithms considered here
always attempt. to move from the minimum on one working sct to the minimum on another by
taking steps of the form p + ép and A + 8. However, the maintenance of certain propertics of the
working st can cause a step a (0 < @ < 1) to be taken, where o depends upon the active-set

strategy being used.

In an active-set feasible-point QP method, p is feasible (ry > 0 for all £), but X is not dual-
feasible (i.c., A; < 0 for at lcast one ¢). Changes in the working sct are designed to maintain
feasibility of p, but to move interior to constraints that have negative Lagrange mmltipliors. At
a typical iteration, the working sct comprises the constraints satisfied exactly at p (ic., # =0 in
(4.2)). ¥ p+ #p remains feasible (i.e., r; +aTép > 0 for 1 not in the working set), then the full step
of unity is permitted. A constraint with a negative multiplier (usually, the most negative) is then
deleted from the working sct. Otherwise, a is taken as the smallest step such that the residual of

a constraint not in the working sct becomes zero at a, and the corresponding constraiut is added

RIS L PR

e T e T e e e e e e P N e e T et T
N A I I A L AT IR AR o LI A S P P R Y e
A N - o = = % ‘ ‘ ‘ .- .' o " - PRINPOAT S v U S JDLY WP R T o AP S N -

2 Practical Aspccts of Noulinear Programuning

m to the working set. For more dctails concerning the implementation of feasible-point quadratic
’ programming mcthods, sce Gill and Murray (1978) and Gill ¢t al. (1984a, 1985D).

The second strategy is typical of dual-feasible active-set methods. In these methods, p is not
feasible (i.c., some r; < 0) but X is always dual-feasible (all A; > 0). Changes in the working sct
are designed to maintain non-negative multipliers while moving to satisfy the violated constraints.
At the beginming of a typical iteration, all the constraints in A are satisfied exactly except one
(i.e., 7 is a multiple of a unit vector in (4.2)). The step length a is taken as one if p + 8p is dual-
feasible (i.c., A; + 6); > 0). Otherwise, a is chosen as the .largcst. step such that A; + ad); = 0 for
an index ¢ in the working set, and the corresponding constraint is deleted from the working sct.
[:‘ After a unit step is taken, a constraint with a negative residual (usually, the most negative) is
added to the working sct. (Note that we have given a considerably simplificd description of the
dual-feasible iteration in order to cmphasize the similaritics between dual- and primal-feasible
mcthods. In practice, ép and 8X are not found dircetly from (4.2) because the new constraint may
be dependent on the constraints already in the working sct.) For further information concerning

the implementation of dual-feasible quadratic programming mecthods, see Goldfarb and Idnani
(1983) and Powell (1983b).

For both of these active-set strategies, cach change in the working get leads to a simple

change to A, which in turn leads to a change in the factorizations used to solve (4.2).

Both of the active-set strategics deseribed require an initialization procedure to obtain an
initial primal- or dual-feasible poiut. As noted above, for efficiency within an SQI* method, it is

critical that this procedure should be able to utilize a pre-assigned working sct.

The inttialization procedure for the primal feasible-point method is equivaleut to a lincar

programming problem. Consider the sum of infeasibilitics

v(p) = - z (alp +¢;). T

alpic,<0 °

Note that »(p) is a lincar function that is zero at any feasible point, and positive at an infeasible - -1
point. Therefore, a feasible point can be found by minimizing »(p), subject to continuing to satisfy _:i‘.j':-,
the conatraints with positive residuals il p. The Tunction »{p) may be minimized using an active- ;::'.'__j
set strategy that is almost identical to that of the feasible-point active-set method. The principal .‘_f-.:_'_;
differences are that the scarch direction is defined as ~ZZTVou(p), and a is chosen as min(ay, ag), ;
where a; is the maximum step that can be taken without violating one of the constraints that :‘.-‘L.-.
is currently satisfied, and ay rcaches the furthest constraint along ép that is currently violated. ;.;fl:
(Several violated constraints may become satisfied during a single iteration.) For cfliciency, the :ﬁ.:}'.:g
implementation of this procedure should refleet the similarity of the linear algebraic computations)
associated with iterations in both the feasibility and QP phases - in particular, cach iteration o ’
involves an update of the same factorization of the working set. The computations in both - :;‘
phases may be performed by exactly the samne program modules. The two-phase nature of the .:-j.:::J
- -

Practical Aspects of Nonlincar Programming ' 23

algorithm is reflected by changing the function being minimized from the sum of infcasibilities
to the quadratic objective function. An important feature of this type of implementation is that
if the pre-assigned working sct is similar to the active sct, just a few changes in working set
are nccessary to achicve feasibility. In particular, if the initial point is feasible, the procedure
merely computes all the relevant factorizations (which are also needed for the QP iterations) and
performs a feasibility check.

If a dual-feasible active-set strategy is used, the following initialization procedure may be
employed. The procedure is based on finding a subsct of the pre-assigned working set on which
the multiplicrs arc positive. First, the minimum of the quadratic on the pre-assigned working set
is computed by solving (4.2) with p = 0 and A = 0. If the é); are non-negative, the initial point
can be taken as p = 8p and A = §A. Otherwisc, a constraint with a negative multiplier is deleted,
the factorizations are updated and (4.2) is solved again. This process is repeated until all the
multipliers arc non-negative or the working sct is cmpty, in which case p = ép and A = 8) define
the required initial point. (Note that the unconstrained minimum is trivially dual feasible.)

An alternative initialization procedure is to start at the unconstrained minimum and give
preference to adding the pre-assigned constraints. However, if the pre-assigned working set is
similar to the active set, this scheme is likely to require more work than the procedure above.
First, more opcrations are required to compute the factorizations by npdating. Sccond, even if
the pre-assigned working set defines the optimal feasible point, the number of QP iteratious may
not be cqual to the dimension of the optimal working sct, since it cannot be guaranteed that the

multipliers will remain dual-feasible during the intermediate iterations.

4.4. Conditioning of the working set. One of ti... most important. issues in the implemen-
tation of QI algorithins is robustness. During the solution of a nonlinear problem, quadratic
subproblems of wildly varying degrees of difficulty are generated “automatically”. Even if the
original nonlincar problem is well-conditioned in the neighborhoad of the solution, the QP sub-
problems of the carly iterations may be very badly behaved. The most common diflicultics
include singular or nearly rank-deficient Jacobians, subproblems with very small feasible regions
and severely ill-conditioned TTessian matrices. (For examples, see Section 5.)

One of the most eritical features of a QP implementation ix the strategy for maintaining
a well-conditioned working set. The spectral condition number of A provides a measure of the
degree of independence of the constraints in the working set. This nnmber (the ratio of the largest
to smallest singular values of A) will decrease when a constraint is deleted from the working sct
and incrcase when a constraint is added. The worst case occurs when the new working set is
singular, i.c., an attemwpt is made to add a constraint that is dependent on constraints already
in the working set. However, if & near-dependent constraint is added to the working set, the
condition nunber may increase substantially. Accordingly, it is important that the constraint-
selection procedure should consider the condition number of the new working set.

With exact arithietic and a non-singular initial working set, the active-sct strategy de-

- ST T T T T P P T T P U O S
PRI PR S W DR P WP, WL APPSR Vo WL Wi 6 WL G VP RPN WLV VRN, PR YA WL

g

o

L]

o

°
L
.
®
RN
I

. N
L o T

‘v“vn:v
- et

e

24 ‘ Practical Aspects of Nonlinear Programming

scribed above for the primal-feasible method would never gencrate a singular working set. To
sce why, recall that Adp = 0 at every itcration. Thus, ép will never intersect a constraint that is
exactly lincarly dependent upon A. In practice, of course, the difficulty arises when the candidate
constraints arc necarly dependent. Determination of the condition number requires the singular
values of A, which would be too expensive to comupute. Instead, a QP method can use an inex-
pensive condition estimator -— for example, the ratio of the largest to smallest diagonals of the
LQ factor L (sce (3.5)), which is a Jower bound on the condition number of A.

Excrcising control over this condition estimator turns out to particularly easy in a primal-
feasible active-set method, if it is acceptable to violate constraints by a small tolerance. Suppose
that cach constraint has an associated user-defined tolerance that specifies the maximuin permis-
sible constraint violation. Let a,, denote the maximuin step at which p + a,,,6p does not violate
any constraint by morc than its fcasibility tolerance. All constraints at distance a (a < a,,)
from the current point are then viewed as acceptable candidates for inclusion in the working set.
A criterion that we have found to be particularly successful in practice (duc to Harris, 1973) is
to add the constraint whose normal makes the largest angle with the search direction. In the
casc where the null space of 4 is of dimension one (for example, in the simplex method for lincar
programming), this choice gives the smallest condition cstimator over the candidate set.

An unsatisfactory featurc of the Harris scheme is that all the constraints active at the so-
lution tend to be violated by their feasibility tolerances, even when the final active set is not
ill-conditioned. However, this idea can be generalized so that constraint violations by é are per-
mitted when necessary to improve the conditioning of the working set, but an attempt is also
made to minimize the constraint violations. With this strategy, the constraints active at the
solution tend to be satisfied exactly rather than violated (sce Gill et al., 1985b). (An interesting

result is that negative steps are sometimes necessary.)

5. Sample runs

In this section we shall use several examples to illustrate the performance of nonlinear program-
ming software on practical problems. All the problems were solved in double precision on an IBM

3081 using the VS Fortran compiler with optimization level 3.

5.1. A comparison of IQP and EQP mecthods. The purpose of the first sct of runs is to
illustrate the propertics of methods based on the EQP and IQDP active-sct strategics. Two specific
methods for lincarly constrained optimization are considered. In order to aid the comparison, the
methods have several features in common. Both methods recur an orthogonal factorization of
the constraints in the working sct and begin by computing a feasible point. Both mcthods trcat
simple bounds and linear constraints separately. .

The first method is a standard IQP method for lincarly coustrained optimization. The
Hessian of cach QP subproblemn is a positive-definite BFGS approximation to the full Hessian of

the objective function, At cach iteration, a steplength is computed that satisfies the linesearch

TR T p———

e

AN A T TR T T o T o e e B St A o e St ood guc it mear

...... —)
.
Practical Aspects of Nonlincar Programming ' 25 - f;il
conditions (2.5¢) and (2.5b). Each QP subproblem is solved using a feasible-point active-set o]
method with an orthogonal factorization of the constraints in the working set. The final working IR
: set from the QP of one itcration is uscd as the initial working sct for the next. For additional -'j
details concerning the Fortran implementation, the reader is referred to Gill et al. (1984b). "
Lj In our discussion, we shall refer to the output printed during the run. A single line of output '.-:"'.-"_
_ is printed at the end of cach major iteration. The major itcration number is given in the first =
s column (marked “ITN”). The next column “ITQP” gives the number of minor iterations needed to '.'-'__fl:j
El solve the QP subproblem. The “STEP” coluimnn gives the step ai taken along the computed scarch ‘.‘
- dircction. “NUMF” is the total number of evaluations of the problem functions. “OBJECTIVE” is S
the value of the objective function, F(zx). Columnns “BND” and “LC” give the numbers of simple- ST

bound constraints and general lincar constraints in the working set. “NZ” is the dimcnsion of

the null space of the current matrix of coustraints in the working set. The next five cntries

give information about the derivatives of the problem at the currcnt point. “NORM GF” is the

two-norm of the free components of the objective gradient gi, and “NORM GZ” is the two-norm of
ZTg,. “COND H”, “COND HZ” and “COND T” arc cstimates of the condition numbers of the Hessian, : . ;
projected Hessian and matrix of constraints in the working set. “CONV” is a set of four logical

variables C;, Ca, C3 and Cy, used to inform the user of the quality of the current estimate of e

the solution, with the following meanings. C; is true if the projected-gradicnt norm is small; C, ._:'_'.j;]

is true if cunstraints are satisfied to within the user-specified tolerance; Cj is truc if the signs of N

the mmltipliers indicate optimality; and Cj is true if the last change in z was small. Finally, in

some of the runs an “S” is printed as the last itemn of the iteration summary. This indicates that
- it was neccssary to skip the BFGS update to the approximate Hessian,

The second implementation is based on an EQP active-set strategy used in conjunction with ...
a BFGS approximation of the projected Hessian ZTHZ. The EQP is solved nsing the orthogonal . 1
LQ factorization and the Cholesky factorization of the projected Hessian (see (3.3) and (3.5)). If S
the objective function is decreasing at the step to the nearest satisfied constraint, the constraint

[
s et
VIR B I)

is added to the working set. Lagrange multipliers are computed when the projected-gradient
norm is less than some loose tolerance. If the smallest multiplier is negative, the corresponding
conztraint is deleted from the working set.

The iteration summary is the same as that for the TQD method except. that only the condition

AN

Wit
e
2artalels ;l

estimate of the projected Hessian is printed (the full Hessian is not recurred), and additional

information is printed about cach change to the working set. When the status of a constraint
changes, the index of the constraint is printed, along with the designation “L” (lower bound), “U”

1o«
« s -';i —ls

(wpper bound) or “E” (cquality). Indices 1 through “N” refer to the bounds ou the variables, and
the remaining indices refer to the general constraints. “KDEL” and “KADD” denote the indices of T
the constraints leaving and entering the working sct. If an entry in one of these columns is sero, .
a constraint was not deleted or added. “MIN LM” is the multiplier associated with the constraint -

just deleted. If no constraint was déleted during the relevant iteration, the entry in this column
-=", The information printed in the “CONV” column is different from that given in the IQP

[P
18

LW LUWOWLNS

26 Practical Aspects of Nonlincar Programming

method. Cj is true if the projected-gradient norm is smaller than some loose tolcrance; Cj is true
if the projected-gradient norm is smaller than some tighter tolerance; Cjs is truc if the change in
the objective function was sufficiently small; and Cy is truc if the change in z is small. Note that
the loosc tolerance on the projected-gradient norimn must be satisfied before any multipliers are
computed and any constraint is deleted.

Figure 1 gives the output from runs on a wcll behaved seven-variable lincarly constrained
problem with seven gencral lincar constraints and upper and lower bounds on the variables. At the
solution, two bounds and three gencral linear constraints are active. A comparison of the output
from the two runs will illustrate one of the major differences between IQP and EQP active-set
strategics —— the different pattern of changes to the working set. In an EQP mecthod, the problem
functions are computed after every step along a scarch dircction. Morcover, a constraint will be
deleted from the working sct only when the current point is considered to be sufficiently close
to the minimmum on the current working sct (albeit to a very low accuracy). In other words, a
constraint will be deleted only when the method has accumulated sufficient information about
the curvature of the problem on the current working set. By constrast, many constraints may be
added or deleted during a single major iteration of an IQP mcthod. In the run given in Figure
1a, the IQP strategy finds a very close approximation to the correct active sct during the first

subproblem.

ITN ITGP STEP MA¥ OBJECTIVE MO LC KZ NORM GF NORM 6Z COND HZ COND W COND T CONV
L] $ 0.00-01 1 1,2127006 3 3 1 9.79 03 6.29002 1.0 00 1.D 00 1.0 OV FPIT
1 1 85.20-01 3 9.59190 085 3 3 1 1.1003 1.14D0 02 1.0 00 2.0 60 1.0 Ot FFTF
2 2 1.0060 4 94923005 £ 3 2 1.1003 2.50D 02 1.0 00 3.D 00 5.0 OF FIFF
3 1 1.00 00 S 9,3120005 2 3 2 1.tD O3 7.190 01 1.0 00 2.0 00 1.0 OV FYTF
4 1 10000 6 9.29%0D05 2 3 T 1.1D03 1.550 09 1.0 00 3.0 00 1.0 O1 TTTF
S 1 10000 7 9290005 ¢ 3 © 1.1003 5.050-02 1.0 00 3.0 60 1.0 01 TITF
[1 1.00 00 8 9290005 2 3 2 4.1D 03 1.230-0¢ 1.0 00 3.0 00 1V.D O1 YVVF
7 1 1.0D00 9 92900085 2 3 2 1.1D0 03 5.970-07 1.0 00 3.0 00 1.0 01 TTTT

EXIT NP PASE. IMFORM = O WAJITS 3 7 WFEVAL ¢ #

Figure 1a. Results of an IQP mcethod on a seven-variable linearly constrained problem.

ITH JDEL JADD STEP MM OBJECTIVE BMD LC NZ NORM EZ WIN LN COND HZ COND T COnv
[[0 0.00-0t 1 1,212 06 ¢ 3 ¢t 2.9 02 - (.00 2008t TrFFPF
1 5L teL (.0D-02 2 1.19%50 06 1 & 2 9.780 02 ~4.50 03 1.0 00 7.0 61 F FYFS
2 [] 3L 1.60-04 3 1.07550 06 & & 9 3.260 02 -= 1.D00 7.00V TFYE
3 0 4.%-01 S 9,322 05 ¢ 3 & 1.730 02 -2.80 03 1.0 00 1.0 OV ¥ FTF
L [o 1.00 00 6 9438705 2 3 ¢ 20O == 1.000 1.0 00 T FYP
1] 3L o 1.00 00 7 9.34340 05 ¢ 3 3 1.6420 02 -1.4D 02 8.0 00 2.0 01 T FVF
¢ [] 4L 1.80-00 6 929705 ¢ 3 2 37900 = 1.0 00 t.0 01 P FTFS
? ° o 1.00 00 9 9.2%00 05 2 3 2 3.900 00 -~ 1.000 1.0 01 FFTF
] [] ¢ 1.0D00 10 9.29%0D005 ¢t 3 ¢ 1.30-03 - t.D0¢ t.00t T YT

[] 0 1.0000 11 9.290008 2 3 T 2.1%-04 -- 1.000 V.00 TTIT

*
EXIT LC PNASE. INFORM = § ITER = 9 NPEVAL » 19

Figure 1b. Results of an EQP mcthod on a scven-variable linearly constrained problem.

T

Practical Aspects of Nonlinear Programming °) F 4

During the final few itcrations, the methods are esscntially identical, with a single minor
iteration being performed in the IQP method. Note that the asymptotic superlinear convergence
rate is evident from the unit steplengths in the “STEP” column and the scquence of converging
“NORM GZ” cntries. This column may be used to verify the convergence to a local minimum (see
Gill, Murray and Wright, 1981).

5.2. Are IQP methods superior to EQP methods? It is a popular myth that the more
“opportunistic” IQP active-set strategy will tend to find the correct active set faster than an

EQP stratcgy. The next two problems arc intended to demonstrate that this is not always the
case. On some problems the IQP method will be faster, on others it will be slower.

In Figures 2a and 2b we give the IQP and EQP results for the minimization of the six- o
variable nonlinear test function “Exp 6” subject to simple-bound constraints upon the variables o
(sce Biggs, 1972b). The coustraints are the vector of simnple lower bounds (0.5,9,0.9,4, 3,2) and -
simple upper bounds (0o, 00, 00,00, 4.9,00). The solution lies at the point (1,10, 1,5, 4, 3), where
no simple bounds are active. (For brevity, the output from some of the less important iterations
has been omitted.) ’

Exp 6 is a problem for which the IQP mcthod is substantially faster than the EQP method.
Since no bounds arc active at the solution, the ability of the quadratic subproblem to drop many
of them during one major itcration allows the IQP mecthod to identify the correct working set
rapidly. By the seventh itcration, all the bounds have been dcleted from the working set. An
adcquate solution is identified at iteration 32. DBy contrast, the requirement of some significant
reduction in the projected gradient on cach working set considerably slows down the rate at which
the EQP method can delete constraints. It is not until iteration 55 that the correct working set
is identified.

Cases where the more conservative strategy of the EQP method gives better perforinance
are illustrated by the problem “Weapon® (sce Bracken and McCormick, 1968). The objective
function is

20 5
F(z) =Y ([i - 1), o
=1 i=t X

which is minimized subjeet Lo twelve general linear constraints and bounds on all the variables.
At the solution, 75 bounds and seven linear constraints arc active. :

When applied to this problem, both methods require approximately the same number of !
function evaluations (sce Figures 3a and 3b). However, the EQP method needs significantly less 2
CPU time to obtain the solution -—- 3.42 seconds compared to 19.48 seconds for the IQP method.
The reason for this discrepancy is that the EQP method maintains a mmch better approximation
to the working set. While moving from the initial feasible point (a vertex) to the solution, the
EQP method maintaina a projected Hessian approximation that never becomes larger than 19
(the size of the projected Heasian at the solution is 18). This performance is to be contrasted
with that of the IQDP incthod, for which the dimnension of ZTH Z increased to 81 during the first

''''''''''

28 Practical Aspects of Noulinear Programming L

I™M ITGP STEP MAW OBJECTIVE BND LC NZ NORM GF NORM GZ COND HZ COND M COND T CONV

O 3 0.00-01 1 1.85810-61 2 O & 1.1D GO0 1.130 00 1.0 06 1.0 00 1.D 00 FYYT

T2 1.10-01 3 1.16020-01 1 O § .40~01 6.390-01 9.0 00 4.0 00 1.0 0O FITF

T 1 1.0000 4 6.15030-02 1 O 5 3.20-01 3.210-01 8.0 00 4.0 06 1.D 00 FYFF

3 1 1.0000 5 1.65430-02 9 O $ 1.20-01 1.17D-03 1.0 0t 4.0 00 1.0 00 FVTF

4 1 10000 6 1.23050-02 1 O 5 4.60-02 €.600-02 1.0 01 4.0 00 1.D Q0 FTTF

5 1 1.0000 7 t.13950-02 § O S 3.20-02 3.170-02 9.0 8 2.0 0% 1.D 00 FVTF

¢ 2 1.0000 & 5.65210-03 0 O 6 1.30-01 1.34D-01 1.0 02 1.0 01 $.D 00 FITF

7 1 1.0DO0 9 4.8169-03 O O 6 4.00-02 ¢.050-02 9.D OV 1.0 O1 1.D 00 FVIF .

6 1 1.0D00 10 4.58290-03 0 O ¢ 1.40-02 1.400-02 6.D 01 9.0 00 1.0 Q0 FVVF s
9 1 1.0D00 11 4.6e470-03 O O ¢ 1.50-02 1.480-02 1.0 02 2.0 01 1.0 60 FYTF .
27 1 1.0DO00 29 1.12630-07 © O 6 6.20-04 6.160-04 7.D 03 7.0 02 1.D 00 FYTF -
28 1 1.0000 30 7.82780-09 & © 6 8.10-05 8.08D-05 6.0 03 7.0 02 1.0 00 FVVF -
20 1 1.0000 3t 1.81750-09 O O & 3.70-05 3.660-05 6.0 03 8.0 02 1.D 0D FYTF -
30t 1.0000 32 1.17040-09 0 O & 1.80-08 1.76D-08 7.0 03 7.D 02 1.D 00 FVYF

30 1 1.0000 33 1.11610-09 O & 6 4.30-06 4.310-06 7.0 03 7.0 02 .0 00 TVIF

32 1 1.0000 34 1.1944D-09 O O ¢ 4.00-07 3.950-07 7.0 03 7.0 62 1.0 00 VYT
EXIT NP PHASE. INFORM = § MAJITS = 32 WFEVAL * M

Figure 2a. Results of an IQP method on the six-variable problem Exp 6.

ITN JOEL JADD STEP MR OBJECTIVE BND LC NZ NORM GZ NIN LN COND MZ COND T CONV -

® 0 0 0.00-0t 1 1.8581D-01 & ¢ ¢t &.170-00 =~ 1.000 1.D000 F rrF :

1 0 o 1.30-01 3 1.41470-01 & 0 ¢ 3.020-01 -~ 1.000 t.000 T PIF

2 [o t.00 00 4 2.35490-02 4 & 2 4.81D-02 == 1.000 1.000 T FYF

3 6L 0 3.30-01 é 2.3056D0-02 3 ¢ 3 2.56D-02 -5.20-02 e.D 00 t.D GO T FVYF

. St ¢ 1.00 00 7 2.19420-08 T O & 7.820-02 -4.00-02 1.0 01 1.D 00 F FYF

5 (4 o 1.00 00 8 1.9597m-02 ¢ 0 & 1.140-0¢ -~ t.00 t.000 Feryr

[0 9 1.00 00 9 1.2390-02 2 0 & 3.460-00 - 6D 01 1.000 FFTF

7 o ¢ 1.0000 10 £.10640-03 2 ¢ & 1.200-0% - 4.0 01 1.0 00 F FYF

8 0 0 1.0000 1t 6.70240-03 ¢ O & 6.370-02 -~ 4001 1.000 P FTF -

’ ° 0 1.0000 12 6.19750-03 2 O & 4.120-03 = 3001 1.000 T FTF e
10 4L 0 1.0D00 13 $.14450-03 9 & 5 9.200-03 -7.1D-03 2.0 01 1.D 00 F FYF
1" [J 9 1.0D00 14 5.9%2%0-03 1 ¢ S5 1.250-02 - 6.001 1.000 FFTF s
12 L] ¢ 1.000¢ 15 5.51390-03 1 ¢ 5 2.170-02 -~ 2.002 1.000 F rFvF -,
35 ° 0 1.0000 39 1.91790-08 1 @0 S 3.100-03 -- 8.0 03 t.D0S F PP L
3 0 ¢ 1.0D 00 40 1.02120-03 t O S 1.140-03 - 9,003 t.000 FriF -
37 9 SU 8.30-01 A1 9.83890-06 ¢ ¢ & 5.470-04 == 4.0 02 1.0 90 F FTF -
30 0 0 1.0000 42 9.80110-06 & ©0 & 4.540-04 -~ 5.002 1.000 FFTF

39 0 0 1.0D00 43 9.79120-06 2 @ & 3.670-08 -~ 5.002 1.0 00 F FTF

40 0 0 1.0000 44 9.79110-06 & ©0 & 1.020-06 - $.002 1.D000 FPFTT - .
o1 0 0 1.0000 45 9.79110-06 2 0 4 $.640-07 -~ 6.0 02 1.000 F PV .
oz 1 0 t.0000 46 9.79110-06 2 ¢ & 1.21D-07 -~ 6,002 1.000 TFIT

43 118 0 1.0000 47 9.796D-06 1 O S 3.640-03 -2.4D-05 9.0 02 1.0 00 F FIT

“» [J 0 10000 48 9.78780-06 | ¢ 5 1.290-04 -= 1.003 t1.000 FFVF R
L L] O 1.0000 49 9.779%0-0¢ 1 ¢ 5 2.900-0¢ -~ 1.00% 1.000 F r7F e
53 [0 1.0D00 57 B5.9%1W-06 1 ¢ 5 7.410-08 == 1.004 t.000 FFTF A
54 [J O 1.0000 58 5.9130-06 1 ¢ 5 6.2400-086 ~= 1.0 04 1.0 00 Y FYF -

s v 0 1.0000 39 5.9%110-06 0 ¢ ¢ 3.610-05 -1.4D0-0S 1.0 04 1.0 00 P FTV
16 L) O 1.00 00 148 4.50M40-10 ¢ O ¢ 7.09-05 - 1.008 1.000 F VP -
"7 [O 1.0DO0 140 S.70710-1t ¢ 0 ¢ 5.010-06 - 7004 tD00 TOYTE .
18 L] o 1.00 00 142 1.42%0-11 O ¢ ¢ 3.310-0¢6 == 1.008 t.000 T TIP -
1e | 0 1.00 00 143 1.3776D-12 0 0 & R.440-0 -~ 1.008 t.00 YTV
120 [d 0 1.0000 te4 35.25950-13 O O & 1.070-04 ~ 8D 1000 TTVIF
1 * 9 1.0008 145 1.17120-16 O & 6 1\.520-07 ~ 9D 0 1000 TTIT .

EXIT LC PNASE. INFORN = @ ITER ® 121 NPEVAL = 143 .

Figure 2b. Results 6f an EQP incthod on the six-variable problem Exp 6.

Practical Aspects of Nonlinear Programming : 2

ITN TP STEP (NP OBJECTIVE BND (C NZ NORM GF NOWM 6Z COND NZ COND N COND T CONV
e 58 0.0 1 -2.26390002 25 3 72 5.90001 S5.410%01 2.0%01 1.0¢00 1.0¢00 FFPFY
1 10 1.00%0¢ 2 =1.10920%03 16 3 61 1.90°01 1.84D%00 3.D0400 2.D*00 1.D+00 FYFF
3 3 1.00%00 3 ~1.43820003 (6 3 81 9.10°00 9.16D*00 2.0001 2.0%00 1.D00 FFFP
3 13 1.00°00 4 ~1.56730%03 29 4 47 B.70*08 5.560%00 2.D%01 2.D400 1.D¢00 FFPP
L] 3 1.00¢00 S ~1.64010003 27 4 69 3.70°00 3.430¢30 4.000%1 3.0400 1.D400 FITPF
$ 4 1.00%00 6 ~1.64310°03 29 5§ 66 2.4D%00 2.360°00 3.D401 4.D400 S5.D*00 FFFF
[¢ 1.00%00 7 ~1.6790%3 28 S 67 2.00°00 1.770¢00 1.D02 4.D¢00 1.0+00 PTFF
7 8 1.00%00 8 ~1.68060%03 34 6 60 $.50000 1.35D¢00 2.0402 4.D00 1.D400 FFFF
] 2 1.00%00 9 ~1.69150%03 35 6 $9 1.4D°00 1.220000 2.040Z &.D*00 1.D%00 FFFFS .
L4 2 1.00%00 10 ~1.49310°03 36 ¢ 58 1.30°00 1.120000 2.D%02 4.D%00 1.D¢00 FFFFS
10 1 1.000G0 11 <1.6945D°03 36 & 3580 1.30°00 1.064D¢00 R2.0¢02 4.D%00 1.0°00 FIFFS
1" 2 2.70%00 13 ~1.6970D¢03 37 6 57 1.10°0 9.540-01 2.D¢02 4.D¢00 1.0400 FYFFS
1t 2 1.00%00 13 ~1.69890%03 38 6 56 1.1D%00 9.210-01 2.D*02 4.D*00 1.D*00 FTFFS '
3 3 1.20°00 17 <1.70010¢03 38 6 56 1.1D0°00 8.920-01 2.0002 4.0¢00 1.D*00 FYPFS -
14 2 1.7D%C0 19 -1.70160403 39 6 35 1.10°00 O0.430-01 2.0002 4.D*00 1.0D+¢00 FYFFS : .
13 2 6.3D%00 29 -1.7069D%03 40 6 54 6.90-01 6.61D-01 7.0401 4.D¢00 1.D*00 FTFFS
16 2 3.60°00 23 -1.70710403 41 6 53 8.50-01 6.260-01 9.0°01 4.D400 1.D¢00 FYFFS
17 2 3.6D%00 25 -1.70080°03 42 ¢ S2 8.40-01 6.25D0-01 9.0¢01 4.D¢00 1.0¢00 FIFFS
18 2 6.00%00 20 -1.71130¢403 43 ¢ 51 7.80-01 S5.770-01 9.0401 4.0400 1.0%08 FYFFS A .
19 2 6.90%00 M -1.71330403 46 6 50 7.40-01 5.490-01 9.0¢01 4.0¢00 1.D¢00 FIFFS e T
20 T 1.90%00 33 -1.71370%03 48 ¢ 49 7.30-01 S.370-01 9.0¢01 4.D*00 1.0400 FTFFS RO
3 1 1.00%60 53 -1.72610°03 S6 & 38 4.00-01 2.420-01 6.0¢01 3.D+01 1.D*00 FYFFS et
40 3 6,00%00 73 -1.73230%03 62 7 31 3.40-01 1,370-01 2.0%02 8.0¢07 2.D¢00 FFFF BN
30 2 1.00000 64 -1.73310403 63 7 30 3.40-01 1.340-01 1.D¢03 1.0402 2.04G0 FIFF ' -
60 1 1,00°00 96 -1.73370%03 64 7 29 2.80-01 7.200-02 5.D¢02 1.0%02 1.0%00 FVFF
70 3 1.,00000 104 -1.73400003 ¢35 7 28 2.9D-01 9.86D-02 6.0¢02 §.0¢02 1.0%G0 FFFF
a0 1T 1.00¢00 116 ~1.73450903 69 7 24 2.70-01 6.030-0Z 1.0%02 9.D401 1.D*00 FYEF
9 1 1,00%00 126 -1.7346D¢03 69 7 26 2.60-0% 3.480-02 6.0¢02 1.0%CZ (.D*CO FTFF
100 1 1.00¢00 134 -1.7346D%63 70 7 23 2.60-0% 2.030-02 3.D¢02 1.D¢02 1.D%00 FYFF
110 1 1.00%00 144 -1.7346D403 7¢ 7 22 2.60-01 {(.550-02 2.0¢02 1.D¢02 1.D400 TTFP
120 t 1.00°00 154 -1.73470403 72 7 21 2.50-01 2.480-02 S.0%02 1.D¢02 2.D%00 FYFF
130 11,0000 164 -1.73470¢63 7¢ 7 21 2.50-01 2.090-02 9.0¢02 1.0¢02 2.0¢00 FIFF
140 1 1.00%00 176 «1.73470403 72 7 29 2.70-0f 2.870-02 6.0¢03 2.0%02 1.D0¢ FIFF
130 1 1.000°00 164 -1.73490403 73 7 20 2.80-61 3.390-02 2.0%03 2.0%03 1.D*00 FYFF
168 T 1.0D°00 194 <1.73490%03 73 7 20 2.00-01 3.390-02 2.0¢03 3.0¢03 1.D%00 FYFF
170 T 1.00%00 204 -1.73500403 75 7 18 2.50-8f 2.000-02 8.D%02 5.D¢03 2.D00 FFFP
180 T 1,00000 214 -1.73500%03 78 7 18 '2.50-0t 9.330-03 6.0°02 S5.0°03 2.D¢00 TVFF
190 1 1.00°00 224 -1.73500903 78 7 18 2.50-01 J.870-03 6.D%02 S.D%03 2.0%00 TTFF
200 1 (,00000 £34 -1.73500%03 73 7 18 Q2.50-01 1.020-03 S.0402 S5.D*03 2.D*00 YIFF
210 1 1.00%°00 244 -1.73500¢03 75 7 18 2.50-01 2.470-04 5.D%02 $.0%03 2.0%00 TIFF
1t t 1.00000 245 -1.73500°03 75 7 18 2.50-00) 1.310-06 S.D*0Z S5.D*03 2.D*00 TIFF
212 1 1.00%00 246 -1.73500403 75 7 18 2.50-01 ¢.180-03 5.D%02 5.D*03 2.0%00 TTFF
213 t 1.00%00 267 -1.73500%03 73 7 18 2.50-01) ¢.900-05 S5.D¢02 5.D*03 2.D*00 TIFF
t1e t 1.00000 248 -1.73500403 75 7 18 2.50-0% 4.700-05 S.0°0C S5.D%03 2.D%C0 TYFT

EXIT NP PHASE. INFORN = & MAJITS = 214 NFEVAL = 240

Figure 3a. Results of an IQP method on the Weapon problem. ® ,‘

two major iterations, Duriug the carly QP subproblems the poor Tlessian approximation canses
the IQP method to delete too many constraints from the working set. Further minor iterations
are then needed to add the constrainta that were deleted uunccessarily. The large dimension of
the projected Hessian also inhibits the ability of the method to recover quickly. Weapon has a
Hessian matrix with many negative and rero cigenvalucs. If there are not cnough constraints
in the working sct, the linescarch function is likely to have negative curvature along the scarch
direction and the quasi-Newton update will be skipped. If this occurs for several consccutive
iterations, the original poor curvature information is left unaltered - as is the inability of the
QP to predict the correct active sct. This behavior was apparent during iterations 8-30 where
no quasi-Newton update conld be performed.

et et e
. AN

e el R
. . . - . -~ . . T, et et .

. At ot DT S R
AIPE S ISP UL SR Y YRR VP Tt U TP Uy LIV T L

30 . Practical Aspects of Nonlinear Programming

IT™ JDEL JADD STEP NUMF OBJECTIVE BND IC NZ NORMGZ MIN LM COND HZ COND T CONV
[[J 0 0.00-01 1 -1.95390 02 91 9 o 0.000-0% == 1.0 00 4.D 00 T TFF
1t 6 1.00 00 2 «3.1550 02 90 ¢ (S.200 00 -2.7D 01 1.0 00 «.D 00 T FVF
¢ tow o 1.00 00 3 -3.63720 02 90 8 2 6.44D 00 -2.4D 01 1.0 00 1.0 00 T FTF
3 &7 ¢ 1.00 00 4 ~5.2490D 02 89 & 3 5.470 00 -2.20 01 2.0 00 t.0 00 T VP
4 N 0 1.00 00 S ~6.8450D 02 88 & & 4.60D 00 -1.90 0% 2.0 00 2.0 00 T FYF
5 87L ¢ 1.00 00 6 ~8.1237D 02 87 8 5 3.430 00 -1.30 0 3.D 00 2.0 00 T FTF
6 77L %L 2.10-0% 7-8.4275D 02 87 8 S5 7.90D 00 -1.30 01 5.0 00 2.D 00 T FYF
7 64L 46L 1.60-0% 6 ~8.79370 02 87 8 5 1.210 01 -1.20 0¢ 3.0 00 2.D 00 T FTF
8 0 o 1.00 00 9 -9.94380 02 87 & 5 S5.280 00 == 3000 2.000 TFVF
* ezt ¢ 1.0000 10-~1.1043003 86 & ¢ 3.20000 -9.30 0% 3.0 00 3.0 00 Y FYF
19 921 o 1.0000 11 ~9.2014D03 85 & 7 2.530 00 -1.30 01 3.0 00 3.0 00 T FTF

e 22t 0 1.0000 21 ~1.50830 03 78 & 14 1.420 00 -3.50 00 6.D 00 3.080 TV FVF
30 0 0 9.0000 31 -1.58%2003 75 & 17 1.51D 0O -- 3.0 01 3.0 00 YFTF
40 0 87L 5.50-01 41 -1.66140 03 78 7 15 1.11D 00 - 1.00t 3000 TFTF
50 ° 0 1.0D00 51 -1.69350 03 77 4 17 1.080 00 -- 1.001 3.0 00 T FTF
60 L] 0 1.00 00 62 ~1.71000 03 79 7 14 &.360-0% -- 4001 2.000 TFTF
70 [4 0 1.0000 72 -9.71520 03 78 & 14 3.36D-01 -~ 3.001 2.0 00 TFTF
80 [] 0 1.0D00 82 -1.71900 03 78 8 14 2.490-00 == 8.001 2.000 TFTF
99 1 0 1.6000 92 -1.7242003 78 & 14 2.050-01 == 3.D02 2.000 T FTF

100 [} 0 1.0000 102 -4.72670 903 77 & 15 2.740-00 -~ 2.000 2.0090 TFTF

110] 0 1.00 00 112 «1.72090 03 77 ¢ 17 2.180-01 - 3001 2.000 TFPYF

120 [0 1.00 00 122 -4.73090 03 78 6 16 1.090-00 -~ 400t 20080 TFTP

130 0 ¢ 1.0000 132 -4, 7HSD O3 77 4 17 1.090-0¢ -~ 3001t 200 TP

140 [} 0 1.00 00 142 -1.73220 03 79 & 153 6.960-02 -~ 1.002 2000 T¥¢YF

150 [0 1.00 00 152 -1.73260 03 78 6 16 S5.980-02 -~ 2.002 2.D0C0 T FTF

160 0 0 1.00 00 162 -1.73290 03 78 & 16 3.990-02 -~ 7.0 01 2.000 TFTF

170 [} 0 1.0D000 972 -1.7331D0 03 77 4 t7 3.220-02 -~ 8.001 2.000 TFTF

180 0 6 1.00 00 162 -9.73330 03 7 6 18 6.320-02 -~ 9.0 01 2.000 T FTF

199 70 0 1.0000 192 -1.73350 03 75 6 (9 2.270-02 -2.00-02 2.0 02 2.0 00 T FTF

200 0 0 1.00 00 202 -1.7337D 03 78 6 19 4.69%-02 -~ 2.002 2.000 T FTF

210 ¢ 8 1.00 00 212 -1.7344D 03 75 7 18 5.690-02 =~ 2.00% 2.000 TFIF

220 [] 0 1.0D0 00 222 -1.7347D 03 75 7 18 2.360-02 -- 3.001 2.000 TFTF

230 L] @ 1.0D 00 232 -1.7348D0 03 74 7 19 6.150-03 ~~ 3.00% 2.000 T FTF

240 [0 1.0000 242 -1.73500 03 75 7 18 1.76D-04 -~ 4,001 2000 T YV

261 (] 0 1.00 00 243 -(.73500 03 73 7 18 5.820-08 -~ 4D 0! 8000 T VW

262] 0 1.00 00 244 -4.73500 03 75 7 18 1.450-08 = 4,001 2,008 T IVF

243 [0 1.0D 00 245 -1.73500 03 75 7 18 1.930-06 -~ 4.001 2000 T TIT

EXIT AC PMASE. IWFORM = O ITER = 243 NFEVAL = 248

Figure 3b. Results of an EQP method on the Weapon problem.

It is difficult to predict in advance whether a particular problein will be more suitable for an
EQP method or an IQP method. IQP methods are likely to be less efficient on problems for which
the QP multiplicrs change rapidly from one iteration to the next. Problemns in this category tend
to be highly nonlinear or to have many small Lagrange mmltipliers. In cither case, the significant
changes to the working set between iterations serionsly impair the ability of the quasi-Newton
update to build nseful cnrvature information about the function. Conversely, 1QP methods will
tend to be efficient if the QP wualtiplier estimates are very accurate when computed at points
that arc far from the solution (for example, if the problem were close to being quadratic).

To a large extent, the relative cfficiency of IQI* and EQP methods depends upon the number
of constraints active at the solution. EQP mecthods are usually implemented so that as many
constraints as possible are included in the initial working sct. It is therefore not surprising that
they tend to be more efficient when more constraints are active at the solution. Finally, the relative
cfficiency of a method is critically dependent upon the ratio of the amount of work required to
perform a single minor iteration compared to the work required to evaluate the problem functions.
As this ratio increases (as it often docs as the size of the problem increascs), the advantage will

Practical Aspects of Nonlinear Programming ’ 31

swing towards the EQP method.

5.3. Typical performance of an SQP method for nonlinear constraints. The remaining
runs were obtained from Version 2.1 of the program NPSOL (sce Gill et al., 1984b), an IQP quasi-
Newton method for nonlinearly constrained optimization. The Hessian of cach QI* subproblem
is a positive-definite BFGS approximation to the Hessian of the Lagrangian function. The QP
subproblem is solved using a feasible-point active-set method with an orthogonal factorization of
the constraints in the working sct.

The merit function used in NPSOL is a smooth augmented Lagrangian function that utilizes
the properties of slack variables. The incquality constraints of NIP can be reformulated as cquality
constraints by adding simply-bounded slack variables s;. Estimatcs of the slack variables are
used in the lincscarch to give a smooth augmented Lagrangian function. At each major iterat™an,
a vector triple (p, 62, 63) is computed that serves as a direction of scarch for the variables z,
multiplier estimnates A, and slack variables s. (All the elements of the vector triple are available
from the solution of the standard IQDP® subproblem considcred in Section 4.2. The vector 8 is
defined as p— A, where are the QP multipliers, and the vector 8s is given by Ap+c— s. Note that
the QP solver docs not need to treat the clements of s as additional variables.) The steplength
is required to produce a sufficicnt decreasc in the angmented Lagrangian merit function

L(z,A8) = F(z) = 3 icilz) - 85) + gz:(c;(z) - %)
§=1 i=1 .

The value of p is initially sct to zcro, and is occasionally increased from its value in the previous
iteration in order to ensurc descent for the merit function. Thus the sequence of penalty pa-
ramcters is generally non-decreasing, although NPSOL has the abilily to reduce the value of the
penalty parameter a limited nmber of times.

The iteration summary printed in cach of Figures 4 6 is identical to that provided by the
lincarly constrained IQP method, except that the merit function value (“MERIT”) is printed
instead of the objective value, and the additional columns “NC™, “NORM C” and “RHO” give the
munber of nonlincar constraints in the working set, the two-norm of the residuals of constraints
in the working set. and the penalty parameter used in the merit function. In all of the NPSOL

runs, the feasibility toleraisee for cach nonlincar constraint was sct at 10 S,

Two runs were sclected to illustrate the behavior of an IQP method when solving well
behaved (but non-trivial) nonlinear problems. Figure 4 gives the results obtained on a version of
the Hexagon problem. (For more details of this problem, sce Wright, 1976. A slightly different
formulation is given as Problem 108 by Hock and Schittkowski, 1081.) Hexagon is a popular test
problem for nonlincar programming methods. All constraint types are included (bounds, linear,
nonlinear), and the Hessian of the Lagrangian fanction is not positive definite at the solntion. The
problem has nine variables, finite bounds on six of the variables, four gencral lincar constraints,

. . . . N . &
and fiftecen nonlinear constraints. Six nonlincar constraints are active at z.

32 Practical Aspects of Nonlinear Programming

The problem solved in Figure 5 is derived from a 30-bus optimal power flow (OPF) problem
of optimizing the distribution of clectrical power over a nctwork. The problemn has 67 variables,
60 nonlincar constraints, and upper and Jower bounds on all of the variables. At the solution, 54
nonlincar constraints and three simple bounds arc active.

ITN ITQP STEP NUME WERIT BND LC NC NZ NORM GF NORM GZ COND NZ COND H COND Y NORM C RHO CONV

(] 6 0.00-0t 114333060 6 0 5 4 2.00 00 2.280-00 1.0 00 1.0 00 3.0 00 1.150 00 O.00-01 FFYY
1 8 4.00-01 3-1.3952000 0 O &4 S 2.10 00 9.210-02 1.0 00 2.0 00 2.D 00 4.150-01 §.30-01 FFTF
2 1 1.00 00 4 -1.29950 00 0 O 4 5 2.00 00 1.64D-01 2.000 2.D 00 1.0 00 6.60D-02 4.1D OO FFYF
3 3 1.00 G0 5-1.3222000 0 @& & 3 2.0000 1.080-00 1.000 7.0 00 2.0 00 2.06D-01 1.1D 00 FFYF
L3 1 1.00 00 6-1.3463000 0 0 4 3 2.1000 1.190-01 2.0 00 4.D 02 2.D 00 1.400-02 1.1D 00 FFYF
s 1 1.0D 00 7-1.34%D 0G0 0 ©0 6 3 2.10 00 2.74D-02 1.0 00 3.D 02 2.0 00 4.950-03 1.1D OO FFVF
6 1 1.00 00 8-1.3498000 ¢ O 6 3 2.1D 00 1.020-02 2.0 00 2.0 02 2.0 00 1.120-03 1.1D 00 FFTF
7 1 1.00 00 9-1.34990 00 0 0 6 3 2.10 00 8.100-03 4.0 00 3.0 02 2.0 00 9.790-05 1.1D 00 FFYF
8 Y %0000 10 -1.35000 00 O O 6 3 2.10 00 1.230-03 4.0 00 2.0 02 2.0 00 5.000-04 1.1D 00 FFTF
9 t 1.0000 11 -4.3500000 & O 6 3 2.1D000 9.350-05 4.D 00 2.0 02 2.0 00 1.130-06 1.4D OV FYTF
10 t 1.0000 12-1.3500000 O O 6 3 2.10 00 2.370-05 4.0 00 2.0 02 2.0 00 5.900-09 5.6D 00 FYTF
" f 1.0000 13-1.3500000 O O 6 3 2.10 00 2.350-06 4.0 00 2.0 02 2.0 00 &.520-10 5.60 00 VIVT

EXIT NP PHASE. INFORM = 0 QMAJITS = 11 NFEVAL = 13 NCEVAL *= 13

VARIABLE STATE VALUE LONER BOLND UPPER BOMD LAGR MULTIPLIER RESIDUAL

VARBL 1 FR 0.6094650D0-07 0.0000000 NONE 9.0000000 0.6095D0-01

VARBL 2 FR 0.5976502 NONE NONE 6.0000000 9.10000 11

VARBL 3 R 1.000000 NONE NONE 9.0000000 6.10000 1t

VARBL & FR 0.5976497 NONE NONE 6.0060000 0.1000D 1t

VARBL S FR 0.6094641D0-01 0.0000000 NONE 9.0000000 9.60950-01

VARBL 6 FR 0.3437710 0.0000000 NONE 0.0000000 0.3438

VARBL 7 R 0 0. NONE ©.0000000 6.5000

VARBL 8 FR -0.5000000 NONE 0.0080000 0.0000000 9.5000

VARBL 9 FR -0.3437708 NONE $.0000000 ©.0000000 0.3438

LINEAR CONSYR STATE VALUE LOMER BOUND UPPER BOUND LAGR MULTIPLIER RESIOUAL

LNCON 1 FR -0.5367037 NONE 0.0000000 0.0000000 0.53467

LNCON 2 FR -0.6023498 NONE 8.0000000 0.0000000 0.4023

INCON 3 FR 0.4023503 0.0000008 NONE 0.0000000 0.4024

LNCON o FR 0.5347033 0.0000000 NONE 0.0000000 0.5367

NONLNR CONSTR STATE VALUE LONER BOLND UPPER BOUND LASR MULTIPLIER RESIDUAL

NLCON 1 R 0.8781070 0.0000000 NONE 0.0000008 0.878¢

NLCON 2 FR 0.6875417 0.0000000 NONE 9.0000000 9.6875

NLCON 3 LL -0.49903940-10 0.0000000 NOHE 0.63183930-01 =0.49900-10

NLCON & LL -0.34527470-09 0.0000000 NONE 0.3202626 =0.34530-09

NLCON 8 FR 0.5272863 9.0000000 NONE 9.0000000 0.5273

NLCON ¢ FR 0.3928143 0.0000000 NONE 0.0000000 0.3928

NLCON 7 R 0.5881147 0.0000000 NONE 0.0000000 0.5881

NLCON 8 LL -0.28772920-09 0.0000000 NONE 0.1992988 -0.28770-09

NLCON 9 LL -0.1479264D-10 0.0000000 NONE 0.3202626 ~0.14790-10

NLCON 10 UL 0.0000000 NONE 9.0000000 ~0.3437718

NLCON 1§ FR 0.5881142 9.0000000 NOME 6.0000000

NLCON 12 LL -0.18458290-11 0.0000000 NONE 0.83183830-0¢

NLCON 3 FR 0.3928147 6.0000000 NONE 9.0000000

NLCON 14 FR 0.68735419 6.0000000 NONE 4.0000000

NLCON 18 FR 0.8781072 0.0000000 NONE 0.0000000

EXIT NPSOL ~ OPYIMAL SOLUTION FOUND.

.
(I}

A

Yy fa

x

*

Figure 4. Output from the solution of the well-behaved problem Hexagon.

-
“
..
v

On therse two well behaved problems, the approximate Hessian and working set remain rela-
tively well-conditioned. Similarly, the penalty paraincters remain small and approximately con-

Practical Aspects of Nonlinear Programming *) 33

stant. The two runs illustrate much of the numerical behavior of a quasi-Newton IQP mecthod
that is predicted from theorctical analysis. As z) approaches the solution, just one minor iteration
is performed per major iteration, and entries in the “NORM GZ” and “NORM C” columns exhibit
the superlinear convergence rate discussed in Scction 3.3. Note that the constraint violations
converge carlier than the projected gradient. The final values of the projected gradient norm and
constraint norm reflect the limiting accuracy of the two quantities. It is possible to achicve almost
full precision in the constraint norm but only half precision in the projected-gradient norm.

™9 ITOP STEP NN MERIT OND RC NC NZ NORM GF NORN GI COND MZ COND M COND T NORM C MO CONV
o 20 0.0 1 -~1.09110%00 ¢ @ SS9 7 (.00%00 7.730-14 1.0400 1.0%00 8.D%0% 2.920%00 0.0 TFFY
1 8 7.00-01 3 1.00100¢00 1 0 55 11 1.00%00 4.54D-01 2.D400 3.D¢00 9.8%01 1.67D%00 4.4D%09 FFYF
4 ¢ (.00400 4 1.00430%00 t 0 56 10 1.00400 2.26D-01 7.D%00 6.D*00 6.0°01 6.310-0t 4.50400 FPTF
3 2 6.9%-01 6 9.91420-0t 1 0 56 10 1.00°00 4.350-02 19.D%0t 1.0901 9.0%01 7.120-01 2.80°00 FFTF
4 3 4.30-0) 8 9.8835D-01 1 0 54 12 1.00000 6.080-02 9.0400 1.0¢01 9.0¢0t 1.0850-02 2.00%00 FFTF

[] 1 1.00%8 9 9.08769%-01 1 0 354 12 1.00%00 7.090-02 2.0%01 3.0%01 9.0%01 1.090-02 2.80%00 FFYF
[1 1.00400 10 9.864420-09 { O S4 12 1.00%00 3.3%0-02 3.D401 04 T7.49D-04 2.80400 FFTF
? t 1.0000 11 9.84500-01 1 ¢ 34 12 1.0D%00 4.220-02 6.D%0% .0 3.840-03 2.80¢00 FFYF
[& 1.0000 12 9.8154D-00 3 0 SS 9 1.0D0%00 7.380-02 8.D%01 4.D*01 9.D¢01 1.18D-01 2.80%00 FFFF
* 4 1.00%00 t3 9.77670-09 S O 54 & 1.00%00 7.920-02 6.0900 9.0¢01 8.0¢01 4.290-02 2.80%00 FFFF
10 2 1.00%00 14 9.73840-00 6 O 54 7 1.0D%0 4.220-02 O6.0%00 9.0%01 9.0¢01 4.590-03 2.80%08 FFVF
" 1 1.00000 18 9.74610-01 ¢ & 54 7 (.0D%00 1.730-02 2.D%0! 9.D¢0! 9.D%01 4.42D-04 2.80D°00 FFIF
172 3 1.00%00 16 9.74310~00 4 O 54 9 1.0D%00 1.90D-02 2.D*01 9.0¢01 9.0%01 1.780-04 2.30°%00 FFFF
13 2 1.0D%0 17 0.74150-01 3 & 34 10 1.00%00 1.37D-02 3.D%01 9.D401 9.0¢01 9.80D-05 2.80%00 FFYF¥
113 2 1.00°0 18 9.74030-01 2 0 54 11 1.0D%00 9.67D0-03 5.D*0% 8.0401 9.D¢0V 1.36D-06¢ 2.80%00 FFTF
13 ? 1.0000 19 9.73920~01 £ 0 54 11 1.00¢00 9.200-03 9.D¢01 $.0¢0% 9.D¢01 1.990-04 2.80400 FFYF
% 2 1.00%0 20 9.73740-01 & 0 55 10 1.00000 1.07-02 7.D¢0% 1.D¢02 9.0%01 3.300-02 2.80%00 FFFF
114 3 1.00000 21 9.7344D~01 3 @ 56 10 1.0D°00 19.250-02 3.D%01 3.D%02 9.0¢01 8.56D-03 2.80¢00 FFFF
18 1 1.00°0 22 9.73000-00 3 @ 354 10 1.00%00 1.210-02 1.D%02 7.0°02 (.D%02 1.990-03 2.60408 FFFF
1 2 1.00%00 23 9.72670~01 4 0 54 9 1.00%00 1.14D-02 3.D%01 9.0%02 1.0°02 5.010-03 2.80%00 FFFF
20 1 1.00°00 24 9.73540-01 4 ¢ 54 9 1.00400 §.740-03 S.D*0f (.00 (.D*02 8.280-035 2.8D%00 FFFF
2% 1 1.00%00 25 9.72390~01 & 0 54 9 1.00000 $.390-03 7.0%01 1.0¢03 1.D¢0C 7.990-04 2.80%0% FFTF
2] T 1.00%0 26 9.7230-01 & O 5S4 9 1.00%00 5.100-03 2.0%02 1.D0%03 1.D°02 8.600-0S 2.80%00 FFYF
2] T 1.00000 27 9.72210-81 3 0 S4 10 1.00°00 4.030-03 3.0002 1.0%03 1.D°02 4.210-03 2.80%00 FPYF
24 1 1.00¢60 28 9.72130-01 3 & 356 10 1.00400 &.510-03 4.D%02 1.D*03 1.D%02 2.330-03 2.80¢00 FFTF
8 2 1.0D%00 29 9.72090-01 & O 54 9 1.00¢00 3.430-03 1.D*0T 9.0%02 1.0¢02 1.480-03 2.80400 FFYF
28 $ 1.00%00 30 9.7207D-81 4 0 $4 9 1.00°00 1.860-03 1.D%02 8.0%02 1.0%02 §.320-03 2.80400 FFYF
7 2 1.00%00 31 9.72070~0% 3 0 54 10 1.0D%00 2.260-03 1.0°02 8.D*0Z 1.D*02 2.990-08 2.80%00 FFYF
28 1 1.00060 32 9.7206D-01 3 0 54 10 1.0D%00 2.530-03 3.0¢02 O6.0¢02 1.D%02 S5.880-0% 2.80%00 FFTF
29 2 1.00%0 33 9.72050-01 4 O 5S4 9 1.00°00 2.150-03 2.0¢02 8.0402 1.0¢02 1(.080-03 2.80%00 FFTF
38 1 1.00%00 34 9,72050-0% 4 O 54 ¢ 1.00%00 1.330-03 3.D402 9.De0E 1.D0¢02 1.110-06 2.80400 FFFF
n 2 1.00°0 35 9.7204D-01 3 0 $6 10 1.00400 1.200-03 £2.0402 9.0°02 1.0%02 S5.170-03 2.80%00 FFYF
32 1 1.00%00 36 9.7204D-01 3 O 54 10 1.00%00 O.530-04 3.0%02 8.0¢02 1.2640-03 2.60%00 FF1F
33 1 1.00400 37 9.72040-01 3 @ 54 10 (.00408 O.720-00 3.D02 s.D*02 2.680-06 2.80°00 FYTF
34 $ 1.00400 38 9.72040-01 3 6 54 10 1.00¢00 1.8%-04 3.0%02 $5.D*02 1.D002 2.57D-06 2.080%00 FYTF
3 1 1.00%¢ 39 9.7204D-01 3 0 54 19 1.00%0 1.900-0¢ 3.000% B.De0R 1.0402 3.250-07 R.80%00 FTTF
3 1 1.00%0 40 9.72040-01 3 6 54 10 1.00°00 2.200-00 3.D°02 7.0°0C 1.0°02 2.340-07 2.80%00 FYTF
37 1 1.00%00 41 9.72040-01 3 0 54 10 1.00°00 2.080-00 4.0°02 9.0°02 1.0%02 1.140-06 2.8D¢00 FYTF
3 1 1.00000 42 9.720640-01 3 0 34 16 1.00°0 3.190-06 B.D%02 8.D82 1.D°02 4.370-06 R2.80400 FTTP
39 1 1.00400 43 9.72040-01 3 ¢ 54 10 1.00°00 2.340-04 3.D%02 7.0°02 1.0%0Z 6.050-06 2.80%00 FTTF
40 1 1.00000 44 9.72040-61 3 O 56 10 1.00°00 4.350-03 $5.0%02 8.0°02 1.0¢02 1.350-06 2.80¢00 FTTF
“ 1 1.00%00 45 9.72040-0f 3 0 54 10 1.00%00 1.080-03 S.0002 08.0°02 1.D%02 6.87D0-08 2.80D+00 YTTF
(2] 1 1.00¢00 46 9.72040-61 3 & 56 (0 1.00900 4.800-07 S$.0002 7.0%02 (.D*0Z 1.66D-08 2.80%00 TTTF
43 1 1.00000 47 9.72040-01 3 & 54 10 1.00¢00 &.700-08 S$.D*0Z 7.0°02 1.D%02 3.400-10 2.80¢00 TTTT

EXIT NP PHASE. INFORM = 0 MAJITS = 43 NPEVAL = &7 NCEVAL = &7

Figure 5. Output from the solution of the OPF problem.

The status and values of the variables and cox;st.mints at the final solution give uscful infor-
mation about the progress of a minimization and the degree of difliculty of the problem. Figure
4 includes the final solution output from NPSOL for Hexagon. The printout is divided into three
scctions, giving information about the final status of the variables, general lincar constraints and

L._n".a.

e g g - —

34 Practical Aspects of Nonlinear Programming

' nonlinear constraints, respectively. Within each section, “STATE” gives the status of the associ-
- ated constraint in the predicted active set (FR if not included, EQ if a fixed value, LL if at its lower
bound, and UL if at its upper bound). VALUE” is the value of the constraint at-the final iteration.
“LOWER BOUND” and “UPPER BOUND” give the lower and upper bounds specified for the constraint
-, (“NONE” indicates that no bound is enforced). “LAGR MULTIPLIER” is the valuc of the Lagrange
I multiplier. This will be zero if STATE is FR. The multiplicr is non-negative if STATE is LL, and
non-positive if STATE is UL. “RESIDUAL” gives the difference between the entry in the “VALUE”
columnn and the nearer bound. -

In the first section, “VARIABLE” is the name (VARBL) and index of a variable. In the lin-
ear constraints section, “LINEAR CONSTR” is the name (LNCON) and index of a linear constraint.
“NONLNR CONSTR” is the name (NLCON) and index of a nonlincar constraint.

Note that, although the feasibility tolerance for the nonlincar constraints is of the order 109,

the final accuracy is considerably better than this. This is becausc the constraint violations
arc being refined during the last few iterations while the algorithm is working to reduce the
projected-gradient norm. Another feature worth noting is that the the constraint values and
Lagrange multipliers at the solution are “wecll balanced”. For example, all the multiplicrs are
approximatecly of the same order of magnitude. This behavior is typical of a well-scaled problem.

5.4. Performance on an ill-conditioned problem. Finally, we give the results of the IQP
a mcthod on the problem Dembo 7. This problem is a geometric programming formulation devel-
- oped by Dembo (1976) of a five-stage membrane separation process. The problem has sixtcen
variablrs, eight linear constraints, and cleven nonlincar constraints. All sixtcen variables have
simple upper and lower bound constraints. The problem canses many difficultics for a nonlincar
i programming algorithin because of bad scaling and linearly dependent constraints.

The results for Dembo 7 show a munber of features that are common to badly behaved
problems. First, note that the number of minor iterations does not decline quickly. Morcover,
the presence of near-zero Lagrange multipliers sometimes causes the QP to require more than
one iteration relatively close to the solution. A very common symptom of a badly bchaved
problem is the large value of the condition cstimator of the full approximate Hessian, which is
to be contrasted with the relatively modest. value of the condition of the projected Hessian. This
observation has some relevancee Lo the choice of method for the QI subproblem. Clearly, special
_ care must be taken when implementing any Q' method that requires the factors of the full
l Hessian (as opposed to the projected Hessian). Starting the minor iterations at an unconstrained
i minimum of the QP subproblemn will result in very large values of 8p (see Section 4.3).

Note that the third bound constraint, the third lincar constraint and cleventh nonlinear con-

0
P

straint all have very small residuals but are not in the working set. The valucs of the nonlincar

constraints in the working set vary significantly in order of magnitude, indicating that the con-
) straints arc badly scaled. In constrast to the solution of Hexagon, in which the accuracy of the
:::j constraints was much better than required by the convergence tolerance, some of the nonlinear
conatraints arc only just satisficd to the required feasibility tolerance., o

L
]

a e ..

‘ » .. []
o
"
a"
C'.
.
4
.
b
h.‘

Practical Aspects of Nonlinear Programming

I™ ITQP STEP NP MERIT BND LC NC NZ NORM GF NORM G2 COND HZ COND N COND T NORM € MHO CONV
¢ 3 0.0 1 2.0459%02 1 3 9 3 1.10003 $.170-01 1.0%00 1.0¢00 7.0¢C3 2.190-01 ¢.0 FFFY
1 13 9%.4D-00 4 -£.1324D%02 3 £ 5 6 0.10%2 1.760%0 4.D¢01 6.D%06 2.D¢02 1.50D%00 1.4D¢06 FFFF
2 12 6.10-03 6 3.73050402 & 2 7 5 -8.10002 1.87D%00 1.D%00 1.D0408 1.D%05 1.49D¢00 1.6D%03 FFFF
3 12 S.70-02 8 4.41820%02 2 ¢ 7 4 8.10%02 1.120002 S.D¢01 3.D¢08 5.0%03 1.641D¢00 8.00402 FFFF
. 7 1.00+00 9 4.02000%02 2 3 § ¢ 6.20402 2.250¢00 1.04C0 1.0408 4.0¢02 1.86D-01 8.0D¢02 FFFF
H 9 1.00%00 10 3.92780%02 & ¢ 7 & 8.10%02 1.620%00 2.D%01 4.D%08 7.D*01 4,180-01 1.3D¢03 FFFF
6 17 1.00400 11 3.03880¢02 £t 3 S 6 1.70402 7.24D0-0% 3.D%08 2.0¢10 4.0%03 3.030-01 8.80¢01 FFFF
7 20 1.00400 12 $.30930402 4 2 8 2 1.50D°02 4.94D*00 8.D%01 7.D%11 1.0405 9.000-01 3.70401 FFFF
8 11 5.00-01 14 -6.21900°03 3 2 ¢ 5 4.40°02 3.120%01 1.D¢04 3.D*12 8.0%02 4.52D-01 6.4D%03 FFFF
* 2 1.00%00 1S 1.90030%02 4 2 6 & 6.4D%02 3.290%01 5.D*05 4.D¢t1 6.D%04 2.370-02 3.8D%02 FFFF

10 1 1.00400 16 1.8996D%02 & & S § 6.4D%02 3.190%07 6.0¢05 2.D%12 1.0%0% 6.80D-06 3.6D*03 FTFF
" 3 1.00900 17 1.89870%02 ¢ & S5 § 6.40002 3.170%01 3.D*06 9.D%10 1.D*01 6.20D-07 6.2D%02 FIFF
12 6 1.00%00 18 1.88830%02 6 1 S5 4 1.6D°02 2.990%01 1.D%02 S.D%11 1.0°01 1.090-01 ¢.20%02 FFFF
13 2 1.00%00 19 1.88090%02 7 Y 5 3 1.50°02 2.290-01 2.0%00 &.0%11 1.0D¢01 7.470-03 6.20402 FFFF
% 4 1.00000 20 (.83570%0Z S 2 6 3 6.30°02 2.350-00 2.0%00 1.0%12 2.D%01 1.97D-03 6.2D%02 FFFF
15 3 1.00%00 29 9.83520%02 5 & 6 3 1.30402 2.36D-01 4.D*01 S5.D411 3.0¢03 3.04D-06 1.10%05 FYFF
16 4 1.00400 22 1.78570%02 4 2 8 T 6.20%02 2.410-02 1.0%00 1.D%12 8.D*03 1.46D-02 6.50¢03 FFFF
17 1 1.00400 23 (1.75090¢02 4 2 8 2 6.20402 6.760-02 1.0¢00 1.0%10 7.0¢03 3.04D-03 2.90+03 FFFF
18 2 1.0D%00 24 1.75064D%C2 85 2 7 2 6.20%02 6.2%0-02 1.D%00 1.D%10 7.0¢03 4.87D-08 2.90¢03 FFFF
19 8 1.00%00 25 1.75050402 ¢ & 6 & 6.20402 1.050%00 2.0¢01 2.D%12 7.D¢02 1.56D-02 2.90¢03 FFFF
20 2 1.00400 26 1.74790402 6 2 7 1 6.20%02 4.910-03 1.D%00 (.0%1t &.0%02 1.020-03 2.90%03 FFFF
2 1 1.00%00 27 1.76480D%02 6 2 7 1 6.20%02 8.5¢0-03 1.D%00 7.0%10 8.D*02 1.160-06 3.30¢04 FYFF
22 3 1.00%00 28 1.7480D402 6 2 7 % 6.20002 1.110400 1.0%00 1.D%12 2.D*03 6.450%00 6.4D¢03 FFFF
23 10 2.50-01 30 1.74790402 6 2 7 1 4.20002 (.350-03 1.D%00 4.0¢tt 2.D%03 7.40D-05 6.4D¢03 TFFF
26 1 1.00400 31 §.74790402 6 2 7 1 6.20%02 7.930-04 1.0%00 S.0411 2.0¢03 3.81D-06 3.80%05 TYFF
25 3 1.00000 32 1.74790%02 S5 ¢ 8§ 2 6.20°02 5.510-06 2.0¢00 6.0%11 2.0¢03 1.19)-07 4.70¢04 TTFF
26 2 1.00%00 33 1.74790%02 6 1 7 2 6.20°02 6.890-05 4.0¢00 S$.0¢1f 2.0403 9.430-08 3.70%0¢ TYFF
27 2 1.00%00 34 1.74790%02 5 1 7 3 6.20%02 1.300-06 2.D¢03 S$.0%11 2.0¢03 1.120-07 3.7D%0¢ VIVF
1 s v 7 3

1.00480 35 1.74790%02 6.20%02 1.230-06 2.0403 S5.D¢11 2.0¢03 1.930-07 3.70404 TYIY

EXIT NP PHASE. INFORM = § MAJITS = 28 NFEVAL = 315 NCEVAL = 35

VARIABLE STATE VALUR LOMER BOUND UPPER BOUND LAGR WUltIPLIER RESIDUAL
VARBL R 8037732 1000000 9000008 N J <96230-01
VARBL 2 " -8161084 .1000000 +9000008 N J .83890-01
VARSL 3 R 9000000 . 1600000 .9000000 .8 -.1388D~16
VIRBL & n - 9000000 .1000000 +9000000 ~436.79%86 N
VARBL S FR .9000000 .9000000 1.000000 .0 <14670-06
VARBL ¢ UL +1000000 .10000000-03 .1000000 -15. 19769 .0
VARBL 7 [L] «1070316 ol . .0 .70320-02
VARBL & R 1908367 .1000000 9000000 9 - 90840-0t
VARSL ¢ m 1908367 . 1000000 .2600000 N4 «9084D-0¢
VARBL 10 " 1900367 +1000000 .9000000 .0 +90840-01
VARBL 11 R 505.0452 1.000000 1000.000 N] 495.0
VARSL 12 (L] 5.066043 «10000000-08 $00.0000 N} 5.046
VARBL 13 R 72.63782 1.000000 509,0000 .0 T1.64
VARBL 16 (38 500.0000 $00.0000 1000.000 4299064 0
VARBL 18 [N 500.0000 500.0008 1000.008 2499969 .0
VARBL 16 w .10000000-08 «10800000-08 $00.0000 JA546718 .0

LINEAR CONSTR STATE VALUE LOWER BOLND UPPER BOLND LAGR IRATIPLIER RESTOUAL
LNCON 1 R 499,999 NONE .0 .0 $00.0
LNCON ¢ R =.1466659%0-06 Note .0 0 JA4670-06
LHCOH 3 R «13877790-16 NOHE .0 .0 =.13800-16
LHCON & R -.83091630-01 NONE .0 N J .83890-01
LHCON 5 FR -.12335210-01 NOHE 0 .0 12340-01
LNCOR ¢ UL ~.55511150-16 NOHE .0 -67.2093 +55510-16
LeoN 7 R 5551115016 NONE A N] -,5551D-16
LUICoN 8 [] 9999983 NONE 1.000008 N] +17440-08
NONLNR CONSTR STATE VALUE LOMER BOND UPPER BOUND LAGR MULTIPLIER RESIOUAL
NLCON ¢ L -0 N J NONE 7.028828 .0

NLCON 2 WL ~.42770100-13 N] NONE 193.7262 ~.62770-13
NLCON 3 [«11275700-16 .0 NONE 263.3147 J11280-16
HLCON & L ~.2168404D-16 .0 NOVE 1047026 -.21680-16
MCON S L -.15621810-06 N] NONE .0 =.15620-06
NLCON & LU =.91342450-06 0 NONE i =.11340-06
NLCON 7 LL ~.104084350-13 N] HONE 37.40837 -,.186480-13
NLCON & L -.2595166D-14 .0 NONE 402.2754 -, 25950-14
NLCON 9 tL ~.13077790-16 0 NONE 60.48867 =, 1388016
NLCOM 10 LL ~-.20816080-13 .9 NOMHE .. -.20820-18
HLCON 19 m 4924376D-18 N J HONE f . A9250-18
EXTT NPSOL - OPTIMAL SOLUTION FOUND.

Figure 6. Output from the solution of Dembo 7.

-
b
o

S
'.-"‘.

s
R

- v ® ¥ W
B} T

SRRV

R T N T NN R T gy

................

36 :] Practical Aspects of Nonlinear Programming

Finally, we wish to emphasize that, despite severe ill-conditioning in the Hessian of the
Lagrangian and scrious dependencies among the constraints, Dembo 7 is solved in a relatively
routine manner. Dependent constraints are successfully omitted from the working set in such a
way that its condition estimator never gets much larger than 10°. Moreover, the final convergence
rate, although not superlinear, is quite rapid.

Acknowledgements

The anthors would like to thank Robert Burchett of the General Electric Company for providing
the 30-bus OPF problem. We are also indebted to Chris Fraley for help in obtaining the results
for Dembo 7.

References

Bartholomew-Biggs, M. C. (1982). “Recursive quadratic programming methods for nonlinear
constraints”, in Nonlincar Optimization, 1981, (M. J. D. Powell, ed.), pp. 213-221, Academic
Press, London.

Biggs, M. C. (1972a). “Constrained minimization using rccursive equality quadratic program-
ming”, in Numerical Mcthods for Non-Linear Optimization (F. A. Lootsma, ed.), pp. 411-
428, Academic Press, London and New York.

Biggs, M. C. (1972b). Minimization algorithms making usc of non-quadratic propertics of the
objective function, J. Inst. Maths. Applics. 8, pp. 315-327.

Boggs, I. T., Tolle, J. W. and Wang, P. (1982). On the local convergence of quasi-Newton methods
for constrained optimization, SIAM J. Control and Optimization 20, pp. 161-171.

Bracken, J. and McCormick, G. P. (1968). Sclected Applications of Nonlinear Programniing, John
Wiley and Sons, New York and Toronto.

Brent, R. P. (1973). Algorithns for Mininization without Derivatives, Prentice-Iall, Inc., Engle-
woad Clills, New Jersey.

Bunch, J. R. and Kaufiman, L. C. (1980). A computational method for the indefinite quadratic
programming problem, Lincar Algebra and its Applics. 34, pp. 341 -370.

Coleman, T. F. and Conn, A. R. (1982). Nonlincar programming via an cxact penalty function,
Math, Prog. 24, pp. 123-161.

Coleman, T. F. and Sorcnsen, D. C. (1984). A note on the computation of an orthogonal basis
for the null space of a matrix, Math. Prog. 29, pp. 234 -242.

Dembo, R. 8. (1976). A set of geometric test problems and their solutions, Math. Prog. 10, pp.
192--213.

: -‘.'?”*T
LA

ey

PP N AN

e . .
. PR ce
id atdoa DL

2
aiaama s

Practical Aspects of Nonlincar Programming) 37

Dennis, J. E., Jr. and Moré, J. J. (1977). Quasi-Newton methods, motivation and theory, SIAM
Review 19, pp. 46-89.

Dennis, J. E., Jr. and Schnabel, R. E. (1981). “A ncew derivation of symmetric positive definite
secant updates”, Nonlincar Programming 4 (O. L. Mangasarian, R. R. Mcyer and S. M.
Robinson, eds.), pp. 167-199, Academic Press, London and New York.

Dennis, J. E., Jr. and Schnabel, R. B. (1983). Numerical Methods for Unconstrained Optimization
and Nonlinear Equations, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

Fiacco, A. V. and McCormick, G. P. (1968). Nonlincar Programming: Sequential Unconstrained
Minimization Techniques, John Wiley and Sons, New York and Toronto.

Fletcher, R. (1981). Practical Mecthods of Optimization, Volume 2, Constrained Optimization,
John Wiley and Sons, New York and Toronto.

Fletcher, R. (1983). “Penalty functions”, in Mathcmatical Programuning: The State of the Art, (A.
Bachem, M. Grotschel and B. Korte, eds.), pp. 87-114, Springer-Verlag, Berlin, Heidclberg,
New York and Tokyo.

Gabay, D. (1982). Reduced quasi-Newton methods with feasibility improvement for nonlinearly
constrained optimization, Math. Prog. Study 16, pp. 18-44.

Gill, P. E.,, Golub, G. H., Murray, W. and Saundcrs, M. A. (1974). Mcthods for modifying matrix
factorizations, Math. Comp. 28, pp. 505--535. .

Gill, P. E. and Murray, W. (1972). Quasi-Newton mcthods for unconstrained optimization, J.
Inst. Maths. Applics. 9, pp. 91- 108. ’

Gill, P. E. and Murray, W. (1974). Newton-type methods for unconstrained and lincarly con-
strained optimization, Math. Prog. 28, pp. 311--350.

Gill, P. E. and Murray, W. (1978). Numcrically stablc methods for quadratic programming, Math.
Prog. 14, pp. 349-372.

Gill, P. E., Murray, W., Saunders, M. A. and Wright, M. H. (1984a). User’s guide for QPSOL
(Version 3.2): a Fortran package for quadratic programming, Report SOL 84-6, Department =

of Operations Rescarch, Stanford University, California.

Gill, P. E.,, Murray, W., Saunders, M. A. and Wright, M. 11. (1984b). User's guide for NPSOL
(Version 2.1): a Fortran package for nonlinecar programming, Report SOL 84-7, Department
of Opcrations Rescarch, Stanford University, California. T

Gill, P. E., Murray, W., Saunders, M. A. and Wright, M. I. (1984c). Procedures for optimization
problems with a mixture of bounds and general lincar constraints, ACM Transactions on
Mathematical Software 10, pp. 282-298.

Gill, P. E., Murray, W., Saunders, M. A. and Wright, M. H. (1984d). Softwarc and its relationship o 1

to methods, Report SOL 84-10, Department of Operations Rescarch, Stanford University,
California.

A S et e e ol i Sbe Jhae ML Ve A & WA Bade- Sdt Tt Shadh. M inade S o) i el i e

38 Practical Aspects of Nonlincar Programming

Gill, P. E., Murray, W., Saunders, M. A., Stewart, G. W. and Wright, M. H. (1985a). Properties
of a represcntation of a basis for the null space, Report SOL 85-1, Department of Operations . N
Rescarch, Stanford University, California. .

Gill, P. E., Murray, W., Saunders, M. A. and Wright, M. H. (1985b). The dcsign and implementa-
tion of a quadratic programming algorithm, to appear, Department of Operations Rescarch,
Stanford University, California.]

Gill, P. E., Murray, W. and Wright, M. H. (1981). Practical Optimization, Academic Press, '
London and New York.

Goldfarb, D. and Idnari, A. (1983). A numerically stable dual method for solving strictly convex
quadratic programs. Math. Prog. 27, pp. 1-33. o

Han, S.-P. (1976). Superlinearly convergent variable metric algorithms for general nonlinear pro-
gramming problems, Math. Prog. 11, pp. 263-282.

Harris, P. M. J. (1973). Pivot selcction methods of the Devex LP code, Math. Prog. 5, pp. 1-28. .
[Reprinted in Math. Prog. Study 4 (1975), pp. 30-57.) ®

Hock, W. and Schittkowski, K. (1981). Test examples for nonlincar programming, Lecture Notes

in Economics and Mathematical Systems, Volume 187, Springer Verlag, Berlin, Heidelberg
and New York.

McCormick, G. P. (1983). Nonlincar programming, Wiley, Wiley-Interscience. LB

Murray, W. (1971). An algorithm for finding a local minimum of an indecfinite quadratic program, ST
Report NAC 1, National Physical Laboratory, England.

Murray, W. and Wright, M. H. (1978). Mcthods for nonlincarly constrained optimization based e
on the trajectories of penalty and barrier functions, Report SOL 78 23, Department of .)
Opecrations Rescarch, Stanford University. :

Murray, W. and Wright, M. H. (1982). Computation of the scarch dircction in constrained opti-
mization algorithms, Math. Prog. Study 16, pp. 63-83.

Murtagh, B. A. and Saunders, M. A. (1978). Large-scale lincarly constrained optimization, Math. L4
Prog. 14, pp. 41 72, By

Nocedal, J. and Overton, M. (1983). Projected Iessian updating algorithms for nonlincarly con-
strained optimization, Report 95, Departinent of Computer Science, Courant Institute of
Mathematical Sciences, New York University, New York. L

Powecll, M. J. D. (1974). “Introduction to constraincd optimization”, in Numecrical Mcthods for
Constrained Optimization (P. E. Gill and W. Murray, cds.), pp. 1-28, Academic Press,
London and New York.

Powell, M. J. D. (1977). “A fast algorithm for nonlincarly constrained optimization calcnlations”, , .
in Numerical Analysis, Dundce, 1977 (G. A. Watson, cd.), pp. 144 -157, Springer-Verlag
Lecture Notes in Mathematics, Volume 630, Berlin, Ieidelberg and New York.

Practical Aspects of Nonlinear Programming ° . 30]

Powcll, M. J. D. (1983a). “Variable metric methods for constrained optimization”, in Mathe-
matical Programming: The State of the Art, (A. Bachem, M. Grotschel and B. Korte, eds.), S
pp. 288311, Springer-Verlag, Berlin, Heidelberg, New York and Tokyo. KX '.:l"

Powell, M. J. D. (1983b). ZQPCVX a Fortran subroutine for convex quadratic programming,

Report DAMTP 83/NA17, Department of Applicd Mathematics and Theoretical Physics, R
University of Cambridge, England. T
RN

Robinson, S. M. (1974). Perturbed Kuhn-Tucker points and rates of convergence for a class of S

nonlinear programming algorithms, Math. Prog. 7, pp. 1-16.

Schittkowski, K. (1981). The nonlincar programming method of Wilson, Han, and Powell with an
augmented Lagrangian type line search function, Numerische Mathematik 38, pp. 83-114.

Schittkowski, K. (1983). On the convergence of a sequential quadratic programming method with
an augmented Lagrangian line search function, Math. Opcrationsforsch. u. Statist., Ser.
Optimization 14, pp. 197-216.

Stewart, G. W. (1973). Introduction to matrix computations, Academic Press, London and New

York.
Stocr, J. (1984). Foundations of recursive quadratic programming methods for solving nonlincar)

programs. Paper prescnted at the NATO Advanced Study Institute on “Computational o
Mathematical Programmning”, Bad Windshcim, July 23-August 2, 1984. -

Tone, K. (1983). Revisions of constraint approximations in the successive QP method for nonlincar. e ;:j
programming, Math. Prog. 26, pp. 144-152. PR

. - o

Wilson, R. B. (1963). A Simplicial Algorithm for Concave Progranuning, Ph. D. Thesis, Harvard
University. . . ;-Z:
Wright, M. H. (1976). Numerical Mcthods for Nonlincarly Constrained Optimization, Ph. D. '.:::1
T

Thesis, Stanford University.

8
ia &

..
................................

® .

Py

T ——— e e Ao 22 A A T S o L o
N . R N SR [l g Dy A T O o o P ——

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
UM SOV ACCRSSION WOJ 5. RECIPIENT'S CATALOG NumsER |

Ao 2159a.2-mp |AD-A155 0

MODEL BUILDING AND PRACTICAL ASPECTS Technical Report

4. TITLE (and Subtitle) §. TYPE OF REPORT & PERIOD COVERED

OF NONLINEAR PROGRAMMING §. PERFORMING ONG. REPORT NUMBER
7. AUTHOR(s) . CONTRACY OR GRANT NUMBER(s)
Philip E. Gill, Walter Murray, Michael A. NO0014-75-C~0267

Saunders and Margaret H. Wright DAAG29-84-K~0156
| PROGRAMK ELEMENT. PROJECT, TASK

. PERFORMING ORGANIZATION NAME AND ADONESS :
Department of Operations Research - SOL AREA & WoRk UMIT NUMSERS

Stanford University NR-047-143
Stanford, CA 94305

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Office of Naval Research - Dept. of the Navy March 1985
800 N. Quincy Street 3. NUMBER OF PAGES
Arlington, VA 22217 39

T SioNiTORING AGENCY NANE B ADDRESI(H dilferent frem Conirelling Office) | 18. SECURITY CLASS. (of this report)
U.S. Army Research Office UNCLASSIFIED

P.0. Box 12211

SCHEDULE

Research Triangle Park, NC 27709 Tla. DEC Em"—ncn—ﬂonho'w‘cu'o'm_'_'e ‘

6. DISTRIBUTION STATEMENT (of thle Repert)

This document has been approved for public release and sale;
its distribution 1s unlimited.

17. DISTRIBUTION STATEMENT (of the sbatract entered in Blosk N, it diltferent from Repeet)

6. SUPPLEMENTARY NOTES
The view, opinions, and/or findings contained in this report are those of

the author(s) and should not be conastrued as an official Department of the
Army positiomn, policy, or decision, unless so designated by other documen-
tation.

19. KEY WORDS (Continue en reverse aide il necesoary and identity by Meek munber)

1.

“sequential quadratic programming numerical methods
Quasi-Newton Methods.
optimization. ,— .

20. ABSTRACT (Continue en reverse side if neccscary and ideniify by blesk number)

(See next page)

DD . on"ys 1473 =oimon or 1 woV 6813 ossoLRTE

.....

.........................
...
...

...................

SECUMTY CLASHPICATION OF THIS PAGE (When Dete Bnteredd

SECYUNITY CLASSIFICATION OF THIS PAGE(When Date Bntored) -

SOL 85~2: MODEL BUILDING AND PRACTICAL ASPECTS OF NMONLINEAR PROGRAMMING
by Philip E. Gill, Walter Murray, Michael A. Saunders and N
Margaret H. Wright.. O

Many optimization problems arise from complex models of real-world
phenomena. This paper examines the close relationship between certain fea-

tures of well-posed models and robust optimization methods. First, a list

of modelling principles is given, to aid in formulating models suited to b
solution by modern optimization methods. Quasi-Newton sequential quadratic
programming methods for nonlinearly constrained optimization are then dis-
cussed. The topics considered include representation and definition of the

approximate Hessian of the Lagrangian function; similarities bet;ween primal -

and dual quadratic programming methods; treatment of inconsistent and ill- .
conditioned subproblems; and properties of various active-set strategies.

Finally, the results of solving several test problems are analyzed in .
detail, including significant characteristics of the overall solution pro- -'-.:f'
cess such as superlinear convergence. f{a\/wordﬁg ~ j M .

SECURITY CLASSIFICATION OF Tuie PAGE(WRe: ta Entere) St

